
George Mason University

CDS 230: Modeling and Simulation I

Spring 2020

Dr. Carlos Cruz (main contributor)

Dr. Hamdi Kavak (Spring 2020 contributor)

Course Notes

1

Contents

1 Setup 3

1.1 The Python Programming Language . 3

1.2 Your first program . 3

1.2.1 What is a Python program? . 4

1.2.2 Hello, world! . 4

1.2.3 Executing a Python Program . 4

1.2.4 Four Ways to Run Python . 5

1.2.5 What to use? . 7

1.3 Input and Output . 7

1.4 Modules . 8

1.5 Intrinsic Functions . 8

1.5.1 Optional Arguments . 9

1.6 Errors . 10

1.7 Programming Style . 10

1.8 References . 10

2 Variables and Data Types 11

2.1 Fundamentals . 11

2.1.1 Operators . 11

2.1.2 Summary of Python Arithmetic Operators . 11

2.1.3 Python Expressions . 11

2.2 Keywords and Identifiers . 13

2.3 Variables . 13

2.3.1 Assignment statements . 13

2.3.2 Namespaces . 14

2.4 Built-in Data Types . 14

2.4.1 Fundamental Types . 14

2.5 Formatting Text and Numbers . 19

2.5.1 Number Formatting . 20

2.5.2 string.format() basics . 20

2

2.5.3 F-strings . 21

2.6 Problem Solving with Python . 21

3 Control Flow 27

3.1 Boolean Expressions (Conditions) . 27

3.1.1 Conditional Operators . 27

3.1.2 Logical Operators . 28

3.2 Conditionals . 29

3.2.1 if Statements . 29

3.3 Loops . 32

3.3.1 Indefinite Iteration: while Loops . 32

3.3.2 for Loops . 34

4 Lists and Tuples 36

4.1 Sequence Types . 36

4.2 Lists . 36

4.2.1 Initialization . 36

4.2.2 Accessing and Editing Lists . 37

4.2.3 Slicing . 37

4.2.4 Operators . 38

4.2.5 Iterating Over List Elements vs. List Index Values . 39

4.2.6 List Comprehensions . 40

4.2.7 Traversing Multiple Lists Simultaneously . 40

4.2.8 Copying Lists . 41

4.3 Tuples . 41

4.3.1 Why use a tuple instead of a list . 42

4.3.2 Nested Data Structures . 43

5 Dictionaries and Sets 44

5.1 Sets . 44

5.1.1 Properties . 44

5.1.2 Initialization . 44

5.1.3 Set operations . 45

5.1.4 Modifying a Set . 45

5.2 Dictionaries . 46

5.2.1 Properties . 46

5.2.2 Initialization . 47

5.2.3 Dictionary Operations . 47

3

6 Functions 50

6.1 Functions . 50

6.1.1 Defining Functions . 51

6.1.2 Docstrings . 51

6.1.3 Value-Returning Functions . 52

6.1.4 Non-Value-Returning Functions . 52

6.1.5 Calling Functions . 53

6.1.6 Parameter Passing . 54

6.1.7 Keyword Arguments . 54

6.1.8 Default Arguments . 55

6.1.9 Variable Scope . 55

6.1.10 Functions as Arguments to Functions . 56

6.1.11 The Main Program . 58

6.1.12 Lambda Functions . 59

6.2 A Bioinformatics Example . 59

6.2.1 Counting Letters in DNA Strings . 60

7 File IO 64

7.1 Reading from a text file . 64

7.2 Reading a Mixture of Text and Numbers . 67

7.3 With statements . 68

7.4 Writing to a text file . 69

7.5 Binary Files . 70

7.6 More on encoding and decoding: Unicode characters . 71

7.6.1 ord() and chr() . 72

8 Arrays 74

8.1 Lists as Arrays . 74

8.2 2D Arrays . 77

8.3 Other Arrays in Python . 82

8.3.1 Basic Typed Arrays . 82

8.3.2 Immutable Arrays of Unicode Characters . 82

8.3.3 Immutable Arrays of Single Bytes . 83

8.3.4 Mutable Arrays of Single Bytes . 83

9 Numpy 85

9.1 When to Use Numpy . 85

9.2 Numpy Data Types . 86

9.3 NumPy Array Fundamentals . 87

4

9.3.1 Other ways to create arrays . 90

9.4 NumPy Array Operations . 91

9.4.1 Basic operations . 91

9.4.2 Comparison operators and value testing . 93

9.4.3 Array item selection and manipulation . 93

9.4.4 Vector and matrix mathematics . 94

9.4.5 Statistics . 95

9.4.6 Random Numbers . 96

9.4.7 Note about operations . 97

9.5 Numpy and Text IO . 97

10 Basic Plotting 99

10.1 Matplotlib: Pylab . 99

10.2 Matplotlib: Pyplot . 102

11 Object Oriented Programming 103

11.1 Classes . 103

11.1.1 Defining a class . 103

11.1.2 Creating objects . 105

11.1.3 Accessing Attributes and Methods . 106

11.1.4 Data Hiding . 108

11.1.5 Passing Objects as Arguments to Function . 109

11.2 Inheritance and Polymorphism . 110

11.3 Multiple Inheritance . 115

11.4 Polymorphism and Method Overriding . 116

11.5 Operator Overloading . 117

11.6 object : The Base Class (Optional) . 120

A Using the Command Line 122

A.1 Using the Command Line . 122

A.1.1 Mac/Linux . 122

A.1.2 Windows . 123

B Computational Problem Solving 126

C References 128

5

Chapter 1

Setup

1.1 The Python Programming Language

This course provides an introduction to modeling and simulation using the Python programming
language. The programs that we will be writing are very similar to their counterparts in several
other languages, so our choice of language is not crucial. We will use Python because it is widely
available, embraces a full set of modern abstractions, and has a variety of automatic checks for
mistakes in programs, so it is suitable for learning to program. More importantly, Python is a free,
open-source, high-level and interpreted general purpose programming language. Its simple syntax
makes it suitable for learning programming as a first language. Other reasons for using Python:

• Python has a large community.

• Python has a very extensive standard library and thousands of external libraries.

• Python interoperates with other languages such as Fortran, C, C++, Java, etc.

• Python finds applications in areas such as:

– Web Programming

– Machine Learning and Artificial Intelligence

– Data Science

– Scripting and Automation

1.2 Your first program

As we dive into the world of Python programming we will first go through the basic steps required
to get a simple program running. To get started we will need the Python interpreter. The
Python interpreter (or simply Python) is a collection of applications, not unlike many of the other
applications that you are accustomed to using (such as your word processor, email program, and
web browser) that takes Python commands and translates them into a language that you operating
system understands. As with any application, you need to be sure that Python is properly installed
on your computer. You also need a text editor and a terminal application. Hopefully by now you

6

should have installed the Python programming environment using the Anaconda distribution. To
test this, from the terminal type (on Linux/Darwin systems):

1 which python

and you will see something like:

1 /usr/bin/python

Once the Python interpreter is properly installed we can create our first program.

1.2.1 What is a Python program?

A Python program is nothing more than a sequence of characters stored in a file whose name has a
.py extension. Python executes this sequence of characters in a specific, consistent, and predictable
order - from top to bottom. Of course, just like any language - we need some rules, or syntax, and
a text editor.

1.2.2 Hello, world!

The program hello.py, shown below, is an example of a complete Python program. The line numbers
are shown to make it easy to reference specific lines, but they are not part of the program and
should not be in your hello.py file.

1 print("Hello World!")

The program’s sole action is to write a message back to the terminal window. The command
print(), which writes the command to the screen, is an example of a Python function. We will
discuss functions in great detail later.

1.2.3 Executing a Python Program

Once you compose the program, you can run it. When you run your program the Python compiler
translates your program into a language that is more suitable for execution on a computer1. Then
the Python interpreter directs your computer to follow the instructions expressed in that language.
Note that the interpreter is a loop2 that:

1. Reads an expression

2. Evaluates the expression

3. Prints the result

If the result is None, the interpreter does not print it.

1Though Python is known as an interpreted language, when you run a Python program the source code is
compiled into a much simpler form called bytecode. This also happens at the Python interactive prompt. However,
you will never notice this compilation steps because it is implicit.

2An interpreter is also called a ”read-eval-print loop”, or a REPL

7

1.2.4 Four Ways to Run Python

We will discuss 4 ways to run a Python program:

1. Interactive command line using python

2. Interactive command line using ipython

3. Scripting

4. Jupyter Notebook

Interactive Command Line

You can use the Python interpreter in an interactive mode to test some commands. For that you
need to type python or ipython on the command line. Interactive code execution is recommended
when you need to immediately test some fragment of the code. You can exit the interactive mode
with quit() or exit() command or Ctrl + D. Note that the sequence of commands that you enter
will not be saved if you close the interactive mode session.

What follows is a sample session using python

1. Open your terminal/Anaconda prompt and type:

python

This opens a Python shell, where you type statements one at a time.

2. Now type:

>>> print(”Hello world!”)

The >>> symbol is called a prompt.

3. You should see the output on the screen.

4. To exit the Python shell type quit() or exit() and the ”return” key or simply Ctrl + D.

Using ipython is very similar. Ipython is an enhanced interactive shell that has many features (e.g.
tab-completion). It also has a prompt that is numbered.

1. Open your terminal/Anaconda prompt and type:

ipython

The prompt should look like the following:

In [1]:

2. Now type:

In [1]: print(”Hello world!”)

and press Enter.

3. You should see the output on the screen.

4. To exit the Python shell type quit() or exit() and the ”return” key or simply Ctrl + D.

8

Scripting

Real Python programs are made as scripts and look like simple text files. These files generally have
the extension .py. You can create text files, and thus Python scripts, using whatever text editor
you like. To run a script you just need to use the Python interpreter and specify the name of the
created file as an additional parameter.

1 $ python my_python_file.py

Sample session:

1. Create a new ASCII/text document named hello.py and enter the following text:

print(’Hello world!’)

2. Save the document and then in your terminal/Anaconda prompt, go to the directory contain-
ing the newly created file. From the terminal/Anaconda prompt, type:

$ python hello.py

3. You should see the output on the screen.

Python interpreter vs. Python program

Running a Python file as a program gives different results from pasting it line-by-line into the
interpreter. In general the interpreter prints more output than the program would. That’s because
in the Python interpreter, evaluating a top-level expression prints its value while in a Python
program, evaluating an expression generally does not print any output.

The Python Anaconda distribution comes with a very powerful integrated development environ-
ment (IDE) called Spyder that combines, among other things, an editor to compose programs and
interactive tools for rapid testing.

Jupyter Notebook

A useful hybrid of the interactive terminal and the self-contained script is the Jupyter Notebook,
a document format that allows executable code, formatted text, graphics, and even interactive
features to be combined into a single document. Though the notebook began as a Python-only
format, it has since been made compatible with a large number of programming languages. The
notebook is useful both as a development environment, and as a means of sharing work via rich
computational and data-driven narratives that mix together code, figures, data, and text.

What follows is a sample session using jupyter notebook

1. Open your terminal/Anaconda Prompt and type:

$ jupyter notebook

2. This directs you to a web browser and you can navigate to an already existing notebook or
create one (right side menu New → Python 3). This will open up a new Untitled notebook
where you can directly input Python code, Markup formatted text, or have raw text.

9

https://www.spyder-ide.org

3. Now type:

print(’Hello world!’)

4. Press Shift+Enter, Cntrl+Enter or click Cells → Run Cells or use the Play button near the
top of the page.

5. You should see the output on the screen. Note that both the prompt and the output look
similar to what we saw with ipython.

6. Exit via closing the browser windows and stopping the server running in the terminal/com-
mand prompt (most likely with a Cntrl+C).

1.2.5 What to use?

For this class the recommendation will be to use the Spyder IDE. Spyder combines the editing
and interactive functionalities integrated in one application. Python programs, which are just text
files, are also easier to update and maintain.

1.3 Input and Output

So far we used the print() function to output data, the string ”Hello, world!”, to the standard
output device (screen)3. To allow flexibility we might want to take the input from the user and
provide the input to our programs to be processed and to eventually produce a result. There are
two ways we can do that. First we have the input() function that allows user interactivity:

1 message = input('Enter a message: ')
2 print(message)

If you run this program it will wait for the user to enter some input. After entering the input one
must press enter and then the next line containing the print statement is executed. We will rarely,
if at all, use input(). More commonly, one uses command line arguments.

One example is illustrated in useargs.py. Open up the script in Spyder and look at its contents. If
you run this program in Spyder you will get an error message because it is expecting a command-
line argument. A command-line argument is text that you type after the program name on
the command line. The program useargs.py takes one argument and writes it back out to the
terminal as part of the message. For example, in your terminal run:

1 $ python useargs.py Alice

2 Hi , Alice. How are you?

3 $ python useargs.py Bob

4 Hi , Bob. How are you?

In useargs.py, the statement import sys tells Python that you wish to use the features defined in
the sys module. One of those features, named argv, is a list of command-line arguments (which
appear after python useargs.py on the command line, delimited by spaces). We will describe lists
in detail; for now it is sufficient to understand that sys.argv[1] is the first command-line argument
that you type after the program name, sys.argv[2] is the second command-line argument that you
type after the program name and so forth.

3We can also output data to a file, but that subject will be discussed later.

10

1.4 Modules

As programs get bigger it is a good idea to break them up into modules. Modules are files
containing Python definitions and statements. Python modules, such as sys, have a filename and
end with the extension .py. Definitions inside a module can be imported to another module or the
interactive interpreter in Python. We use the import keyword to do this.

Which Python modules, besides sys, and functions are available to use? Many standard mod-
ules are bundled with any Python installation. Many others are available as extension modules
that you can download and install subsequently. We can also compose our own. In short, thou-
sands of Python modules, each (typically) defining multiple functions, are available for you to use.
This manuscript introduces only the most fundamental modules and functions, and does so in
a deliberately incremental fashion (starting in the next section) to avoid overwhelming you with
information.

1.5 Intrinsic Functions

The print() function is a Python built-in function. Note that the general form of a function call
is:

1 function_name(arguments)

The rules for executing a function call:

1. Evaluate the arguments.

2. Call the function, passing in the argument values.

Terminology:

1. Argument: a value given to a function

2. Pass: to provide to a function

3. Call: ask Python to evaluate a function

4. Return: pass back a value

Python has a set of built-in functions. To see the list of built-in functions, run

1 dir(__builtins__)

To get information about a particular function, call the help function and pass the function as the
argument. For example:

1 help(print)

11

1 Help on built -in function print in module builtins:

2

3 print (...)

4 print(value , ..., sep=' ', end='\n', file=sys.stdout , flush=

False)

5

6 Prints the values to a stream , or to sys.stdout by default.

7 Optional keyword arguments:

8 file: a file -like object (stream); defaults to the current sys.

stdout.

9 sep: string inserted between values , default a space.

10 end: string appended after the last value , default a newline.

11 flush: whether to forcibly flush the stream.

A useful definition to remember is:

An argument is a value you pass to a function when calling it.

1.5.1 Optional Arguments

If you run help(pow):

1 help(pow)

you get

1 Help on built -in function pow in module builtins:

2

3 pow(x, y, z=None , /)

4 Equivalent to x**y (with two arguments) or x**y % z (with three

arguments)

5

6 Some types , such as ints , are able to use a more efficient

algorithm when

7 invoked using the three argument form.

In the documentation of function pow , the z=None indicates that the third argument z has a
default value (which is None) and so z is optional. That is, function pow can be called with either
two or three arguments:

1 pow(10, 2)

2 >>> 100

3 pow(10, 2, 3)

4 >>> 1

Can you figure out what the last statement is computing?

12

1.6 Errors

It is easy to blur the distinction among editing, compiling, and interpreting programs. You should
keep them separate in your mind when you are learning to program, to better understand the
effects of the errors that inevitably arise.

You can fix or avoid most errors by carefully examining the program as you create it. Some errors,
known as compile-time errors, are raised when Python compiles the program, because they prevent
the compiler from doing the translation. Python reports a compile-time error as a SyntaxError.
Other errors, known as run-time errors, are not raised until Python interprets the program.

The most common problem among beginners involves misuse of Python’s rules regarding whitespace
characters such as tabs, spaces, and newlines. In general, Python considers most whitespace in
program text to be equivalent, with two important exceptions: string literals and indentation. A
string literal is a sequence of characters inside single quotes, such as ”Hello, World”. If you
put any number of spaces within the quotes, you get precisely the same number of spaces in the
string literal. Indentation is whitespace at the beginning of a line. The number of spaces at the
beginning of a line plays an important role in structuring Python programs, as we will see later in
the course For now you should not indent any code.

1.7 Programming Style

One final item that deserves some elaboration is programming style.

The overarching goal when composing code is to make it easy to understand. Understandable
programs are more likely to be correct, and are more likely to stay correct as they are maintained
over time. One simple way to write good programs is to use comments. Comments are indispensable
because they help other programmers to understand your code and even can help you to understand
your own code in retrospect. Whereas constraints in the course, and this manuscript, demand that
we use comments sparingly you should strive to write good comments.

Programmers use style guides to make programs easier to understand. The official Python style
guide is given in http://www.python.org/dev/peps/pep-0008/. We recommend that you give the
style guide a quick read now, and that your return to it occasionally as you gain more experience
with composing Python programs.

1.8 References

• You are encouraged to visit the official Python website, http://www.python.org. More specif-
ically:

Official Documentation (Python 3.x)

• The Python Visualizer (written by Philip Guo) is a great tool that helps visualize program
execution:

Python Tutor

13

http://www.python.org/dev/peps/pep-0008/
http://www.python.org
http://docs.python.org/3/
http://pythontutor.com/visualize.html#mode=edit

Chapter 2

Variables and Data Types

2.1 Fundamentals

2.1.1 Operators

An operator is a symbol that represents an operation that may be performed on one or more
operands. For example, the + symbol represents the operation of addition. An operand is a value
that a given operator is applied to, such as operands 2 and 3 in the expression 2 + 3.

An operator is a symbol that represents an operation that may be performed

on one or more operands. Operators that take one operand are called unary

operators. Operators that take two operands are called binary operators.

2.1.2 Summary of Python Arithmetic Operators

+ Addition Adds values on either side of the operator.

- Subtraction Subtracts right hand operand from left hand operand.

* Multiplication Multiplies values on either side of the operator

/ Division Divides left hand operand by right hand operand

// Floor Division Returns integer part of the quotient

% modulo Divides left hand operand by right hand operand and returns remainder

** Exponent Performs exponential (power) calculation on operators

Python provides two forms of division. ”true” division is denoted by a single slash, /. Thus, 25/10
evaluates to 2.5. Truncating division is denoted by a double slash, //, providing a truncated result
based on the type of operands applied to.

2.1.3 Python Expressions

An expression is a combination of symbols (or single symbol) that evaluates to a

value. Expressions, most commonly, consist of a combination of operators and

14

operands.

Open up the Python interpreter and type the following expressions:

1 2

2 1 + 2

3 2**12

4 1/-12

5 (72 - 32) /9*5

Python will happily compute their values. The first three expressions are straightforward. The
fourth one would be considered very unusual or even confusing if handwritten on a piece of paper
but in Python it is unambiguously correct. What about the last one? In Python an expression is
evaluated from the inside out1. So, the expression (72− 32)/9 ∗ 5 is evaluated as follows:

1 (72 - 32) /9*5

2 (40) /9*5

3 40/9*5

4 4.44*5

5 22.2

Though this may seem trivial note what happens when you enter the following expression (72 −
32)/(9 ∗ 5)? What do you get? 0.88. Well, perhaps that’s what you want to compute. However,
if you are trying to convert degrees Fahrenheit to degrees Celsius then the last expression (and
result) is wrong. So, precedence of operators is important in Python and if precedence is
not clear then you should use parentheses2.

When Python executes the following expressions there are differences between integer arithmetic
and real (floats) arithmetic that you should keep in mind (You can do this just in your interpreter
and you don’t need to turn anything in for this part, but pay attention to the output!)

1 5/2

2 5/2.0

3 5.0/2

4 7*(1/2)

5 7*(1/2.0)

6 5**2

7 5.0**2

8 5**2.0

9 1/3.0

Note that as long as one argument is a float all results will be floats. In the last case the final
digit is rounded. Python does this for non-terminating decimal numbers, as computers cannot store
infinite numbers!

1More generally, Python evaluates an expression by first evaluating its sub-expressions, then performing an oper-
ation on the value. Notice that each sub-expression might have its own sub-sub-expressions, so this process might
repeat several times.

2If you remember PEMDAS from elementary school then it is the same for Python: (),**,*,/,+,-

15

2.2 Keywords and Identifiers

Keywords are the reserved words in Python. Keywords cannot be used as a variable name,
function name or any other identifier. They are used to define the syntax and structure of the
Python language. In Python, keywords are case sensitive and all keywords - except True, False and
None - are in lowercase.

The list of Python keywords (as of Python version 3.7) is:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try
as def from nonlocal while
assert del global not with
async elif if or yield

Table 2.1: Keywords in Python

An identifier is a name given to entities like variables, functions and classes to help them differ-
entiate one from another.

2.3 Variables

Think of a variable as a container. A variable stores a value so that you can reuse it later in your
program. This reduces redundancy, improves performance, and makes your code more readable.
In order to use a variable, you first store a value in the variable by assigning the variable to this
value. Later, you access that variable, which looks up the value you assigned to it. It is an error
to access a variable that has not yet been assigned. You can reassign a variable - that is, give it a
new value - any number of times.

Note that Python’s concept of a variable is different from the mathematical concept of a variable. In
math, a variable’s value is fixed and determined by a mathematical relation. In Python, a variable
is assigned a specific value at a specific point in time, and it can be reassigned to a different value
later during a program’s execution.

Python stores variables and their values in a structure called a frame. A frame contains a set of
bindings. A binding is a relationship between a variable and its value. When a program assigns a
variable, Python adds a binding for that variable to the frame (or updates its value if the variable
already exists). When a program accesses a variable, Python uses the frame to find a binding for
that variable.

2.3.1 Assignment statements

An assignment statement is a directive to Python to bind the variable on the left side of the =
operator to the object produced by evaluating the expression on the right side. For example, when
we write c = a + b, we are expressing this action: ”associate the variable c with the sum of the
values associated with the variables a and b.”

16

In lecture we discussed how one can assign values to a variable. Let’s look at that in more detail.
Consider the following series of statements where we introduce the Python built-in function id that
returns the memory address used by the variable:

1 In [1]: x = 2

2 In [2]: print(id(x), x)

3 4490380384 2

That big number 4490380384 denotes where the data lives in the memory and it will probably
be different in your computer system. What happens if we create another variable with the same
value?

1 In [3]: y = 2

2 In [4]: print(id(y), y)

3 4490380384 2

After two consecutive assignments the ids of both x and y are the same implying that we are
reusing the same memory location. Python does this to optimize memory and only so for very
special cases (in the above case for small integers)!

For now, the take home message is that ”=” in an assignment statement is different than the
mathematical meaning of ”=”. Evaluating an expression gives a new (copy of a) number, rather
than changing an existing one. A useful tool to visualize how an assignment statement is executed
is the Python Visualizer. Try it!

2.3.2 Namespaces

A name (also called identifier) is simply a name given to objects. Everything in Python is an
object. A name is a way to access the underlying object.

So now that we understand what names are, we can move on to the concept of namespaces:
A namespace is a collection of names. Imagine a namespace as a mapping of every name, you
have defined, to corresponding objects. Different namespaces can co-exist at a given time but are
completely isolated.

A namespace containing all the built-in names is created when we start the Python interpreter and
exists as long we don’t exit. This is the reason that built-in functions like id(), print() etc. are
always available to us from any part of the program. To view the global namespace run:

1 dir()

Each module creates its own global namespace. These different namespaces are isolated. Hence, the
same name that may exist in different modules do not collide. Modules can have various functions
and classes (which we have not discussed yet). This leads to the idea of variable scope which will
discuss later.

2.4 Built-in Data Types

2.4.1 Fundamental Types

A data type is a set of values and a set of operations defined on those values.

17

http://pythontutor.com/visualize.html#mode=edit

Many data types are built into the Python language. So far, each value we have seen is a single
datum, such as an integer, decimal number, or Boolean. We will now formally introduce Python’s
built-in data types int (for integers), float (for floating-point numbers), str (for sequences of
characters) and and bool for logical variables. But first, we introduce an important concept:
objects.

Objects

All data values in a Python program are represented by objects and relationships among objects.
An object is an in-computer-memory representation of a value from a particular data type. Each
object is characterized by its identity, type, and value.

• The identity uniquely identifies an object. You should think of it as the location in the
computer’s memory (or memory address) where the object is stored.

• The type of an object completely specifies its behavior - the set of values it might represent
and the set of operations that can be performed on it.

• The value of an object is the data-type value that it represents.

Each object stores one value; for example, an object of type int can store the value 1234 or the
value 99 or the value 1333. Different objects may store the same value. For example, one object
of type str might store the value ’hello’, and another object of type str also might store the same
value ’hello’. We can apply to an object any of the operations defined by its type (and only those
operations). For example, we can multiply two int objects but not two str objects.

Integers

The int data type represents integers or natural numbers. The common arithmetic operations on
integers have already been introduced.

Floats

The float data type is for representing floating-point numbers, for use in scientific and commercial
applications. The common arithmetic operations for integers also work with floats. A very useful
built-in function in Python is the type() function that prints the type of the variable:

1 i = 2

2 print(type(i))

3 Out []:

4 <class 'int'>
5 x = 3.14

6 print(type(x))

7 Out []:

8 <class 'float '>

We use floating-point numbers to represent real numbers, but they are decidedly not the same as
real numbers! There are infinitely many real numbers, but we can represent only a finite number of

18

floating-point numbers in any digital computer. For example, 5.0/2.0 evaluates to 2.5 but 5.0/3.0
evaluates to 1.6666666666666667. Typically, floating-point numbers in Python are represented in
double precision and have 15-17 decimal digits of precision.

Strings

The str data type represents strings, for use in text processing. The value of a str object is
a sequence of characters. You can specify a str literal by enclosing a sequence of characters in
matching single quotes or double quotes.

1 str1 = 'this is a string '
2 str2 = "this is also a string"

Strings can not be changed, i.e. they are immutable3. This simply means that once a string is
created it maintains its identity forever. If it is redefined then its identity is changed. For example:

1 str1 = 'this is a string '
2 str1 = 'this is also a string '

In this case the second instance of str1 has the same name as the first instance, but a different
identity.

One can create a new string from the concatenation of two strings using the operator +.

1 str1 = "abcde"

2 str2 = "efghi"

3 str3 = str1 + str2

Creating a string of repeating characters is accomplished by using the multiplication sign.

1 str1 = "*"

2 10* str1

3

4 Out []: '********** '

Converting numbers to strings for output. Python provides the built-in function str() to
convert numbers to strings. Our most frequent use of the string concatenation operator is to chain
together the results of a computation for output using the print function, often in conjunction with
the str() function, as in this example:

1 x = 1

2 y = 2

3 print(str(x) + '+' + str(y))

Converting strings to numbers for input. Python also provides built-in functions to convert
strings (such as the ones we type as command-line arguments) to numeric objects. We use the
Python built-in functions int() and float() for this purpose. If the user types 1234 as the first
command-line argument, then the code int(sys.argv[1]) evaluates to the int object whose value
is 1234.

3int and float data types are also immutable. That is, once you create a numeric variable, you cannot change it.
It makes sense, right?

19

Accessing String Characters

A string is a sequence of characters. For example:

1 a_str_seq = "We bring together a multitude of people and ideas in

everything that we do. Our culture of inclusion , our

2 multidisciplinary approach , and our global perspective , make us more

effective educators and scholars."

3 a_str_seq [0]

4

5 Out []: 'W'
6 a_str_seq [1]

7

8 Out []: 'e'

The value in the square brackets is the index. Python, like C and Java, begins counting at 0, and
so the first position in a string is denoted by a 0, the second position in a string is denoted by a 1,
and so on.
Negative indices will access letters from the end of the string. So,

1 a_str_seq [-1]

2

3 Out []: '.'
4 a_str_seq [-2]

5

6 Out []: 's'

shows two examples which retrieve the last character (using [-1]) and the next to last character
(using [-2]).

Accessing multiple letters of a string is performed through slicing. For example:

1 a_str_seq [0:6]

2 Out []: 'We bri'

The first is the starting index and the second is the ending index. However, the character of the
second index is not extracted. Therefore a str seq[0:6] extracts letters from positions 0, 1, 2, 3, 4
and 5 but not 6. The first index is included and the second index is excluded.

The example below shows the task of splitting a string up into two substrings at location 10. Line
1 uses [:10] instead of [0:10]. These are equivalent. If the substring being extracted starts at the
beginning of the string, then the first index is not required. Likewise, if the extraction goes to the
end of the string, then the second index is not required as shown in line 2. The string a1 is the
first ten characters of the original string, and a2 is the rest of the string. Since the second index of
line 1 is excluded and the first index of line 2 is included, the character at position 10 appears in
only one of the strings.

1 a1 = a_str_seq [:10]

2 a2 = a_str_seq [10:]

20

In the next example 3 values are used. These are the starting index, the ending index, and the step
size. In this example, the a3 is every third character from the first 20 characters of a str seq.

1 a3 = a_str_seq [0:20:3]

2 a3

3

4 Out []: 'Wbnteea '

Finally, the next example has nothing before the first or second colon. This indicates that the
entire string is being used. The step size is -1 which steps in the backwards direction. Thus, this
line reverses the string. The first 10 characters of this new string are printed to confirm the result.

1 a4 = a_str_seq [:: -1]

2 a4

3

4 Out []: '.sralohcs '

String Functions

Several functions are defined to manipulate strings and return information about their contents.
Examples:

• The len function determines the length (numeric size) a a string.

• The find function will find the location of the first substring within a string.

• The count function counts the number of occurrences of a target string.

• The case of a string can be forced by the functions upper and lower.

• The replace function replaces a substring with another.

Usage:

1 In [1]: my_str = "Don't judge each day by the harvest you reap but

by the seeds that you plant."

2

3 In [2]: len(my_str)

4 Out [2]: 77

5

6 In [3]: my_str.find('e')
7 Out [3]: 10

8

9 In [4]: my_str.find('y')
10 Out [4]: 19

11

12 In [5]: my_str.count("you")

13 Out [5]: 2

14

15 In [6]: my_str.upper()

21

16 Out [6]: "DON'T JUDGE EACH DAY BY THE HARVEST YOU REAP BUT BY THE

SEEDS THAT YOU PLANT."

17

18 In [7]: my_str.lower()

19 Out [7]: "don't judge each day by the harvest you reap but by the

seeds that you plant."

20

21 In [8]: my_str.replace('y', 'Y')
22 Out [8]: "Don't judge each daY bY the harvest You reap but bY the

seeds that You plant."

Booleans

The bool data type has just two values: True and False. The apparent simplicity is deceiving
beacuse booleans lie at the foundation of computer science. The most important operators defined
for booleans are the logical operators: and, or, and not.

isinstance

We can use the isinstance built-in function for testing types of variables:

1 isinstance(x, float)

2 True

Finally, you can do type casting:

1 x = 1.5

2 print(x, type(x))

3 (1.5, <type 'float '>)
4 x = int(x)

5 print(x, type(x))

6 (1, <type 'int'>)

2.5 Formatting Text and Numbers

From Newton’s second law of motion one can set up a mathematical model for the motion of the
ball and find that the vertical position of the ball, called y, varies with time t according to the
following formula:

y(t) = v0t+
1

2
gt2 (2.1)

Instead of just printing the numerical value of y in our programs, we may want to write a more
informative text, typically something like

1 at t= 0.6 s, the height of the ball is 1.23 m.

22

where we also have control of the number of digits (here y is accurate up to centimeters only).
How can we do that? One way to do it is to use Python’s str.format(). format() is a function
available to string objects that provides the ability to do complex variable substitutions and value
formatting.

The built-in format function can be used to produce a numeric string of a

given floating-point value rounded to a specific number of decimal places.

2.5.1 Number Formatting

The following table shows various ways to format numbers4 using Python’s str.format(), including
examples for both float formatting and integer formatting.

To run examples use print(”FORMAT”.format(NUMBER)). So, to get the output of the first
example, you would run:

1 print("{:.2f}".format (3.1415926));

Number Format Output Description

3.1415926 {:.2f} 3.14 2 decimal places

2.71828 {:.0f} 3 No decimal places

-1 {:+.2f} -1.00 2 decimal places with sign

0.25 {:.2%} 25.00% Format percentage

1000000000 {:.2e} 1.00e+09 Exponent notation

5 {:0>2d} 05 Pad integer with zeros (left padding, width 2)

2.5.2 string.format() basics

Here are a couple of examples of basic string substitution, the {} is the placeholder for substituted
variables. If no format is specified, it will insert and format as a string.

1 s1 = "Python is {}".format("a very popular language")

2 s2 = "CDS230 combines {} and {} elements".format("data", "science")

You can also use the numeric position of the variables and change them in the strings, this gives
some flexibility when doing the formatting, if you make a mistake in the order you can easily correct
without shuffling all the variables around.

1 s1 = " {0} is better than {1} ".format("emacs", "vim")

2 s2 = " {1} is better than {0} ".format("emacs", "vim")

Now we can format the output at the beginning of this section:

1 t = 0.6

2 y = 1.23456

3 print("at t= {} s, the height of the ball is {:.2f} m.".format(t,y))

4There are many more ways. These are the ones we’ll use in this class. For more information see the Python
documentation.

23

2.5.3 F-strings

The same formatting can be accomplished using f-strings. With f-strings we do away with the
.format() syntax and instead prepend the string with an ”f” and use string substitution as before.
For example:

1 t = 0.6

2 y = 1.23456

3 print(f"at t= {t} s, the height of the ball is {y:.2f} m.")

For this class you can use either format() or f-strings

2.6 Problem Solving with Python

The solution to most of the exercises in this course is a Python program. To produce the solution,
you first need understand the problem and what the program is supposed to do, and then you need
to understand how to translate the problem description into a series of Python statements (see Ap-
pendix B). Equally important is the verification (testing) of the program. A complete solution to a
programming exercise therefore consists of two parts: the program text and a demonstration that
the program works correctly. Some simple programs have so simple output that the verification
can just be to run the program and check the output. In cases where the correctness of the output
is not obvious, it is necessary to convince yourself that the result is correct. How? This can be a
calculation done separately on a calculator or one can apply the program to a special simple test
with known results. We will deal with these issues as they arise.

What follows is a series of examples that aim to show how to go about solving problems with
Python in this course.

Example 1: Write a program for converting Fahrenheit degrees to Celsius.

Solution: The solution process can be divided into three steps:

1. Establish the mathematics to be implemented. Do we know the conversion formula? Yes, the
formula to use is C = 5

9(F − 32), where F is the input temperature in degrees Fahrenheit and
C is the desired output in Celsius.

2. Coding of the formula in Python. This can be as simple as C = (5/9) ∗ (F − 32).

3. Establish some test cases. This is very important. The important idea is, if possible, to use
test cases that we know the answer to, generally boundary cases. For example we all know
that F = 32 corresponds to C = 0. We can therefore, in our new program, set F = 32 and
check that we get C = 0.

1 # Convert from Fahrenheit degrees to Celsius degrees

2 F = 32

3 C = (5/9)*(F - 32)

4 print(C)

5 Out[]: 0.0

24

Another test case could be F = 212 corresponding to C = 100, the boiling point of water. Once
you are satisfied that your program passes some simple tests you can gain confidence that it may
be correct. The current problem is simple enough to test but that will very frequently not be the
case.

Example 2 (trig identity.py): Show that sin2θ + cos2θ = 1.

Solution: This is not expected to be a mathematical proof but rather a computational one. One
way of doing this is as follows:

1 from math import sin , cos , pi # import only what you need

2 theta = pi/4 # test value in radians

3 one = sin(theta)**2 + cos(theta)**2

4 print(one)

5 Out[]: 1.0

Remember: when dealing with trig functions all angles are represented in radians. Here we only
tested one value. Is that enough?

Example 3 (quad math error.py): Very often we find ourselves trying to figure out why our
program doesn’t work. So, can you find the problem(s) with the following program?

1 from math import sqrt # import only sqrt

2 a = 2

3 b = 1

4 c = 2

5 q = sqrt(b*b - 4*a*c)

6 x1 = (-b + q)/2*a

7 x2 = (-b - q)/2*a

8 print(x1 , x2)

Upon running the program we will get the following output:

1 Traceback (most recent call last):

2 File "quad_math_error.py", line 3, in <module >

3 q = sqrt(b*b - 4*a*c)

4 ValueError: math domain error

The Python interpreter will point you where the error is occurring and the error message says that
the value is wrong. You can probably check manually and note that the value inside the square
root is negative. Therefore, to fix the problem you need to be able to deal with negative roots,
that is, use complex numbers. Complex numbers and functions can be imported using the cmath
module. So, changing ”from math import sqrt” to ”from cmath import sqrt” will fix the problem.

Example 4 (trajectory.py): Trajectory of a ball. One can show that a ball thrown at an angle θ
with the horizontal ball will follow a trajectory through the air described by the following equation:

f(x) = xtanθ − 1

2v20

gx2

cos2θ
+ y0 (2.2)

In this expression, x is a horizontal coordinate, g is the acceleration of gravity, v0 is the magnitude
of the initial velocity which makes an angle θ with the x axis, and y0 is the initial position of the

25

ball. Suppose a baseball is hit at 60 km/h at an initial angle of 30◦. Also, let x = 0.5m and
y0 = 1m. Write a program for evaluating f(x). The program should write out the value of all the
involved variables and what their units are.

Solution: We use the SI system and so v0 is given in m/s; x, y, and y0 are measured in meters; θ
in radians and g = 9.81 m/s2 The program has naturally four parts: initialization of input data,
import of functions and π from math, conversion of v0 and θ to m/s and radians, respectively, and
evaluation of f(x). We choose to write out all numerical values with one decimal. The program
could look like this:

1

2 # Initialization

3 g = 9.81 # m/s**2

4 v0 = 60 # km/h

5 theta = 30 # degrees

6 x = 0.5 # m

7 y0 = 1 # m

8

9 # Import functions

10 from math import pi , tan , cos

11

12 # print out all variables

13 print("""\

14 v0 = {:.1f} km/h

15 theta = {:d} degrees

16 y0 = {:.1f} m

17 x = {:.1f} m\

18 """.format (v0 , theta , y0 , x)

19)

20

21 # Convert v0 to m/s and theta to radians

22 v0 = v0/3.6

23 theta = theta*pi/180

24

25 # Evaluate f(x)

26 y = x*tan(theta) - 1/(2* v0**2)*g*x**2/((cos(theta))**2) + y0

27

28 # Solution to problem

29 print('y = {:.1f} m' .format(y))

30

31 Output:

32

33 v0 = 60.0 km/h

34 theta = 30 degrees

35 y0 = 1.0 m

36 x = 0.5 m

37 y = 1.3 m

Note how we use a print() with a format statement spanning multiple lines (line 12).

26

Example 5 (age secs.py): Age in Seconds Program
We look at the problem of calculating an individual’s age in seconds. It is not feasible to determine
a given person’s age to the exact second. This would require knowing, to the second, when they
were born. It would also involve knowing the time zone they were born in, issues of daylight
savings time, consideration of leap years, and so forth. Therefore, the problem is to determine
an approximation of age in seconds. The program will be tested against calculations of age from
online resources.

So, how do we get started? This is a complex problem so we will follow the guidance from appendix
B.

The Problem Statement

Determine the approximate age of an individual in seconds, say, within 99% accuracy of results
from online resources. The program must work for dates of birth from January 1, 1900 to the
present.

Problem Analysis

The fundamental computational issue for this problem is the development of an algorithm incor-
porating approximations for information that is impractical to utilize (time of birth to the second,
daylight savings time, etc.), while producing a result that meets the required degree of accuracy.

Program Design

There is no requirement for the form in which the date of birth is to be entered. We will therefore
design the program to input the date of birth as integer values. Also, the program will not perform
input error checking, since we have not yet covered the programming concepts for this.

Data Description

The program needs to represent two dates, the user’s date of birth, and the current date and then
calculate the difference. Since each part of the date must be able to be operated on arithmetically,
dates will be represented by three integers. For example, May 15, 1992 would be represented as
follows:

1 year =1992

2 month=5

3 day=15

Though these are integers, we cannot just take the difference of two dates. How can we deal with
dates? That can be a bit difficult and can leads us down a rabbit hole. So, we will use the Python
Standard Library module datetime to represent dates and which contains lots of functionality to
help us deal with datetime arithmetic (see see https://docs.python.org/3.7/library/datetime.html).

Now we consider how the calculations can be approximated without greatly affecting the accuracy
of the results. First we start with the issue of leap years. Since there is a leap year once every four

27

https://docs.python.org/3.7/library/datetime.html

years (with some exceptions), we calculate the average number of seconds in a year over a four-year
period that includes a leap year. Since non-leap years have 365 days, and leap years have 366, we
need to compute,

1 numsecs_day = (hours per day) * (mins per hour) * (secs per minute)

2 numsecs_year = (days per year) * numsecs_day

3 avg_numsecs_year = ((4 * numsecs_year) + numsecs_day) // 4

4 avg_numsecs_month = avg_numsecs_year // 12

Note that if we directly determined the number of seconds between the date of birth and current
date, the months and days of each would need to be compared to see how many full months and
years there were between the two. Using 1900 as a basis avoids these comparisons. Thus, the rest
of our algorithm is given below.

1 numsecs_1900_to_dob = (year_birth - 1900) * avg_numsecs_year +

2 (month_birth - 1) * avg_numsecs_month +

3 (day_birth * numsecs_day)

4 numsecs_1900_to_today = (current_year - 1900) * avg_numsecs_year +

5 (current_month - 1) * avg_numsecs_month +

6 (current_day * numsecs_day)

7 age_in_secs = num_secs_1900_to_today - numsecs_1900_to_dob

Program Implementation and Testing First, we decide on the variables needed for the pro-
gram. For date of birth, we use variables month birth, day birth, and year birth. Note that this is
bettwer than using variables such as m, d and y. Similarly, for the current date we use variables
current month, current day, and current year.

1 import datetime

2

3 # Inputs

4 month_birth = int(input('Enter month born (1 -12): '))
5 day_birth = int(input('Enter day born (1 -31): '))
6 year_birth = int(input('Enter year born (4 digit): '))
7

8 # Get current time

9 current_month = datetime.date.today ().month

10 current_day = datetime.date.today ().day

11 current_year = datetime.date.today().year

12

13 # test output:

14 print(f"Your birth date is: {month_birth} {day_birth} {year_birth}")

15 print(f"The current date is: {current_month} {current_day} {

current_year}")

16

17 # Main algorithm

18 numsecs_day = 24*60*60

19 numsecs_year = 365* numsecs_day

20

21 avg_numsecs_year =((4 * numsecs_year) + numsecs_day) // 4

28

22 avg_numsecs_month = avg_numsecs_year // 12

23

24 numsecs_1900_to_dob = (year_birth - 1900) * avg_numsecs_year + \

25 (month_birth - 1) * avg_numsecs_month + \

26 (day_birth * numsecs_day)

27 numsecs_1900_to_today = (current_year - 1900) * avg_numsecs_year + \

28 (current_month - 1) * avg_numsecs_month + \

29 (current_day * numsecs_day)

30 age_in_secs = numsecs_1900_to_today - numsecs_1900_to_dob

31

32 print(f"You are approximately {age_in_secs} seconds old")

Notes

• Note how input() is used: Each input is type casted to an integer.

• Note the use of integer division //

• Note the use of line continuation characters \

Run the program and compute your age in seconds. Compare the result with those of an online
program. Do you think the program above is ”good enough”?

29

Chapter 3

Control Flow

Control flow refers to the order that instructions are executed in a program.

A control statement is a statement that determines the control flow of a set of

instructions.

There are three fundamental forms of control that programming languages provide - sequential
control, selection control, and iterative control. Collectively a set of instructions and the control
statements controlling their execution is called a control structure.

3.1 Boolean Expressions (Conditions)

Each value in Python has a type: int, float, string, boolean, etc. A boolean can have either the
value True or the value False. In Python, certain operators compute values that are True or False.

An expression that computes a True or False value is called a boolean expression.

3.1.1 Conditional Operators

There are several conditional operators:

• < less than

• > greater than

• == equal to

• >= greater than or equal to

• <= less than or equal to

• ! = not equal to

30

These operators not only apply to numeric values, but to any set of values that has an ordering,
such as strings. Examples:

1 print(True and True) # prints True

2 print(True and False) # prints False

3 print(3 < 4 and 10 < 12) # prints True

4 print(3 < 4 or 12 < 10) # prints True

5 print(4 < 3 or 12 < 10) # prints False

6 print((4 < 3 and 12 < 10) or 7 == 7) # prints True

7 print (10 < 0 and not 10 > 2) # prints False

8 'Alice ' < 'Bob' # prints True

String values are ordered based on their character encoding, which normally follows a lexographi-
cal (dictionary) ordering. So in the last example, ’Alice’ is less than ’Bob’ because the Unicode
(ASCII) value for ’A’ is 65, and ’B’ is 66.

When we have a boolean expression like x < 4 Python actually computes a value. In fact, it
computes a boolean value of True or False. So if x currently has the value 5, the expression x < 4
evaluates to the value False. It follows that you can store the results of a conditional operation in
a variable:

1 z = 1 > 2

2 print(z)

3 False

Notice that in mathematics, the equation z = 1 > 2 makes no sense. In Python, the line of code
z = 1 > 2 is perfectly fine. It means: compute the expression 1 > 2, which gives False, and then
assign that False value into the variable z.

Consider the following example:

1 from math import pi , sin

2

3 print(pi) # prints 3.14159265359

4 print(sin(pi)) # prints 1.22464679915e-16

5 print(sin(pi) == 0) # prints False. Uh-oh!

The problem you see above arises because floats have limited precision. That is, Python only has
an approximate value for π. The numerical computation of the sin function is also approximate.
So, careful when using == to compare floats!. Can you think of a more robust way to compare
floats?

3.1.2 Logical Operators

One can operate on boolean values using logical operators. and, or and not are Python’s logical
operators that operate on boolean values and evaluate to another boolean value. Interpretation of
logical expressions involving not, or, and and is straightforward when the operands are Boolean:

• not. Logically reverses the sense of x.

• and. Given x and y expression evaluates to True if both x and y are True, False otherwise.

31

• or. Given x or y expression evaluates to True if either x or y are True, False otherwise.

Caveat: Notice that if the first operand of and evaluates to False, we’re done: we know that the
result of and must be False, regardless of the second operand. We don’t even have to look at
the second operand. Python short-circuits if it sees that the first operand of an and is False; it
doesn’t evaluate the second operand at all!

In short-circuit evaluation, the second operand of Boolean operators and and or

is not evaluated if the value of the Boolean expression can be determined from

the first operand alone.

Finally, it is interesting to note that in Python every object has a boolean value. Generally
one finds that:

• All integers evaluate to True, except 0 which evaluates to False

• All strings evaluate to True, except the empty string

One can use the boolean function bool to evaluate any Python object and check its boolean value.
For example bool(True) returns True and bool(1<2) return False. Run the following examples on
the interpreter and try to understand the output:

1 bool("hello")

2 bool(1 and 1)

3 bool(0 and "test")

4 bool(False or 1)

5 bool(True and 10 or not 0)

3.2 Conditionals

All of the programs that we have examined to this point have a simple flow of control: the state-
ments are executed one after the other in the order given. Most programs have a more complicated
structure where statements may or may not be executed depending on certain conditions (condi-
tionals), or where groups of statements are executed multiple times (loops).

3.2.1 if Statements

In Python conditionals are known as control structures because they direct the order of execution
of the statements in a program. There are various structures depending on how many conditions
are being evaluated.

Unary Selection

1 if condition: # HEADER

2 Python code that runs iff condition is True # CLAUSE

3 Proper indentation is critical

32

This is the simplest control structure. There is one condition that, if True, evaluates the state-
ment(s) in the clause else it does nothing. First of all note that there is a colon after the condition.

More important is the amount of indentation of each program line. In most programming lan-
guages, indentation has no affect on program logic - it is simply used to align program lines to aid
readability. In Python, however, indentation is used to associate and group statements. In fact, all
statements within a Python block1 must same the same indentation2. Example:

1 y = -2

2 a = y < 1

3 if a:

4 print ('a is non -zero ')

Binary Selection: Binary selection has two conditions:

1 if condition:

2 Python code that runs iff condition is True

3 else:

4 Python code that runs iff condition is False

5 ...again , indentation is important

This control structure divides the flow in two depending on whether the control condition is True
or False. In the following example input is a Python function that prompts a user for input. input
always expects a string which is why n is converted to an int via type casting:

1 n = int(input('Enter a number: '))
2 if n % 2 == 0:

3 print ("Number is even")

4 else:

5 print ("Number is odd")

6 print ("Done")

If n % 2 is true, the first clause is executed, and the second is skipped. If n % 2 is false, the first
clause is skipped and the second is executed. Either way, execution then resumes after the second
clause. Both clauses are defined by indentation.

Chained if Statements: There is also syntax for branching execution based on several alterna-
tives. For this, use one or more elif (short for else if) clauses. Python evaluates each expression in
turn and executes the clause corresponding to the first that is true. If none of the expressions are
true, and an else clause is specified, then its clause is executed3:

1 if condition1:

2 Python code that runs iff condition1 is True

3 elif condition2:

4 Python code that runs iff condition2 is True

5 elif condition3:

6 Python code that runs iff condition3 is True

7 else:

8 Python code that runs iff conditions 1-3 are False

1The usual approach taken by most programming languages is to define a syntactic device that groups multiple
statements into one compound statement or block. A block is regarded syntactically as a single entity.

2In Python, 4 spaces is the standard
3Note the else clause is optional.

33

Example:

1 n = int(input('Enter a number: '))
2 if n < 0:

3 print ('n is negative ')
4 elif n > 0:

5 print ('n is positive ')
6 else:

7 print ('n is zero ')

An if statement with elif clauses uses short-circuit evaluation, analogous to what you saw with the
and and or operators. Once one of the expressions is found to be true and its block is executed,
none of the remaining expressions are tested.

Nested if Statements: This is a generalization of the above cases.

1 if condition1:

2 Python code that runs iff condition1 is True

3 else:

4 Python code that runs iff condition1 is False

5 if condition2:

6 Python code that runs iff condition2 is True

7 else:

8 Python code that runs iff condition2 is False

Example:

1 n = int(input('Enter a number: '))
2 if n > 0:

3 print ('n is positive ')
4 if n % 2 == 0:

5 print ('... and also even ')
6 else:

7 print ('... and also odd')
8 else:

9 if n == 0:

10 print ('n is zero ')
11 else:

12 print ('n is negative ')

Conditionals allow us to write programs that are more interesting than ”straight-line” programs,
but it is still quite limited, and often misused or abused.

For example:

1 # code that computes precipitation and temperature

2 #...

3 precipitation = True

4 temperature = 2.0

5 #...

6 #

7 if precipitation:

34

8 if temperature > 0:

9 print('Bring your umbrella!')
10 else:

11 print('Wear your snow boots and winter coat!)

The statement above can be simplified by removing some of the nesting. The message ’Bring your
umbrella!’ is printed only when both of the if statement conditions are True. The message ’Wear
your snow boots and winter coat!’ is printed only when the outer if condition is True, but the inner
if condition is False. The following is equivalent to the code above:

1 precipitation = True

2 temperature = 2.0

3 if precipitation and temperature > 0:

4 print('Bring your umbrella ')
5 elif precipitation:

6 print('Wear your snow boots and winter coat!')

One way to think about the power of a class of programs is in terms of how long they can take
to run. Assume one line of code takes one unit of time to execute. If a ”straight-line” program
has n lines of code, it will take n units of time to execute. What about a program with selection
statements? It might take less than n units of time to run but it cannot take more since each line
of code is executed at most once.

A program for which maximum running time is bounded by the length of the program is said to
run constant in time. Constant-time programs are quite limited in what they can do. The study
of intrinsic difficulty of problems is the topic of computational complexity. We may allude to
this topic a few times later in the semester.

3.3 Loops

If there is one thing computers are good for is to perform repetitive tasks. For that reason loop
constructs are some of the most useful ones in programming4 and there are two types: indefinite
and definite.

A definite loop is a program loop in which the number of times the loop will

iterate can be determined before the loop is executed. A indefinite loop is a

program loop in which the number of times the loop will iterate is not known

before the loop is executed.

3.3.1 Indefinite Iteration: while Loops

A while loop is similar to an if statement: it repeats an operation while a condition is true. The
syntax of a while-loop looks is as follows:

1 while condition: # HEADER

2 # python code # BODY

4Looping is also known as iteration

35

The condition is an expression that evaluates to a boolean value: either True or False. Notice that
while is written in lowercase, and there is a colon after the condition.

The body of a while-loop is made up of the lines of code that we want to be executed multiple
times and, like if-statements, indentation is critical.

We shall introduce this kind of loop through an example. The task is to generate the rows of the
table of Centigrade (C) and Fahrenheit (F) values. The C value starts at -20 and is incremented
by 5 as long as C ≤ 40. For each C value we compute the corresponding F value and write out the
two temperatures. We postpone to nicely format the C and F columns of numbers and perform for
simplicity a plain print C, F statement inside the loop.

1 C = -20 # starting value for C

2 dC = 5 # increment of C in loop

3 while C <= 40: # loop heading with condition

4 F = (9/5)*C + 32 # Conversion from C to F

5 print(C,F) # Result

6 C = C + dC # Increment

7 print('Done.')

The first statement whose indentation coincides with that of the while line marks the end of the
loop and is executed after the loop has terminated. You are encouraged to cut-paste in the code
above in a file, run it and observe what happens.

Now, let’s consider the following statement:

1 C = C + dC # Increment

This is an example of a counter variable or an increment function. It is important to remember
that whenever you write a while loop, you must think about an appropriate increment function.
Incrementing the value of a variable is frequently done in loops and so there is a special short-hand
notation for this and related operations:

1 C += dC # equivalent to C = C + dC

2 C -= dC # equivalent to C = C - dC

3 C *= dC # equivalent to C = C*dC

4 C /= dC # equivalent to C = C/dC

If an increment is not defined you may end up with an infinite loop - which may

be bad. However, programs with infinite loops are not always bad. A robot might

be intended to act forever, and the structure of the code might be an infinite

loop considering and taking actions. However, unintentional infinite loops are a

common programming error, and can have drastic unintended consequences,

like causing the user’s computer to become unresponsive while all available

computation power is used running the loop.

break Statement

Loops iterate over a block of code until test expression is false, but sometimes we wish to terminate
the current iteration or even the whole loop without checking test expression. The break statement

36

terminates the loop containing it. Control of the program flows to the statement immediately after
the body of the loop.

1 while condition:

2 # some code

3 if condition:

4 break # breaks out of loop

Example: Find the first positive integer divisible by both 11 AND 12.

1 x = 1

2 while True:

3 if x % 11 == 0 and x % 12 == 0:

4 break

5 x = x + 1

6 print (x," is divisible by 11 and 12")

continue Statement

The continue statement is used to skip the rest of the code inside a loop for the current iteration
only. Loop does not terminate but continues on with the next iteration.

1 while condition:

2 # some code

3 if condition:

4 continue # goes back to check while condition

Let’s say we want to print all natural numbers less than 100 which are not multiples of 3 and 5

1 x = 1

2 while x <=100:

3 x += 1

4 if x % 3 ==0 or x % 5 == 0:

5 continue

6 #no more code is executed , we go to the next number

7 print(x, end=' ')

This is actually not a very elegant solution and has a ”mistake”. Can you spot the mistake?

3.3.2 for Loops

Definite iteration loops are frequently referred to as for loops and exists in nearly all programming
languages, including Python. The most basic for loop is a simple numeric range statement with
start and end values, something like this:

for i = 1 to 10

<loop body>

In Python the for loop is not like the type above. Instead, the for loop iterates over a collection of
objects, rather than specifying numeric values or conditions, something like this:

37

for i in <collection>

<loop body>

More formally, the general format of a Python for loop is the following:

1 for <var > in <iterable >:

2 <statement(s)>

Here <iterable> is a collection of objects5. The <statement(s)> in the loop body are denoted
by indentation, as with all Python control structures, and are executed once for each item in
<iterable>. The loop variable <var> takes on the value of the next element in <iterable> each
time through the loop.

A numeric range loop isn’t directly built into Python but Python provides a built-in range function
that can be used to generate a sequence of integers that a for loop can iterate over, as shown below

1 x = range (5)

2 print(x)

3 range(0, 5)

4 print(type(x))

5 <class 'range '>
6 # Then one can loop:

7 for i in x:

8 print(x)

9 0

10 1

11 2

12 3

13 4

14 5

range(<begin>, <end>, <stride>) returns an iterable that yields integers starting with <begin>,
up to but not including <end>. If specified, <stride> indicates an amount to skip between values
(analogous to the stride value used for string and list slicing).

Another iterable object is a string. A string is a collection of characters and can be looped over:

1 s = "hello"

2 for c in s:

3 print(c)

4 Out[]:

5 p

6 y

7 t

8 h

9 o

10 n

Note that the loop prints one character of string s in each line.

5In Python, iterable means an object can be used in iteration. If an object is iterable, it can be passed to the
built-in Python function iter(), which returns something called an iterator!

38

Chapter 4

Lists and Tuples

4.1 Sequence Types

We have introduced Python’s built-in data types: int, float, str and bool. Now we introduce
Python’s data structures1, specifically those known as sequence types. We have already seen one
sequence data type: str. Sequence types are qualitatively different from numeric types (int, float)
because they are compound data types - meaning they are made up of smaller pieces. Strings, of
course, are made up of smaller strings, each containing one character. Another characteristic of
sequence data types is that they are iterable.

4.2 Lists

A list is a linear data structure, meaning that its elements have a linear ordering, that can
store multiple pieces of information and with a single variable name. The list name, together with
a non-negative integer, called the index, can then be used to refer to the individual items of data.
Finally, a list is a mutable data type which means we can change its elements.

4.2.1 Initialization

Lists are enclosed in square brackets ([and]). These are some examples:

1 empty_list = []

2 # or

3 empty_list = list() # list() constructor

4 my_list = [2, 3, 5]

5 shoplist = ['apple ', 'mango ', 'orange ', 'banana ']
6 mixed_list = [1, 'a', 3.1416 , my_list]

7 a = ['bark ', 'meow ', 'woof ', 'bark ', 'cheep ', 'bark ']

Note mixed list contains mixed types, including other lists and can contain much more2. The list a
contains repeated items, showing that list elements need not be unique. Finally, a list can contain

1As a general rule, data structures are objects that contain a possibly large number of other objects.
2Lists can even contain complex objects, like functions, classes, and modules, which will be discussed later.

39

any number of objects, from zero to as many as your computer’s memory will allow.

4.2.2 Accessing and Editing Lists

Every element in a list is associated with an index, which reflects the position of the element in the
list3. Lists in Python use zero-based indexing. Thus, all lists have index values 0...n− 1, where n
is the number of elements in the list.

1 my_list = [2, 3, 5]

2 my_list [0] # first element in my_list

3 2

4 my_list [1]

5 3

Python allows negative indices, which ”count from the right”. So, my list[-1] gives the last element
of the list my list. my list[-2] is the element before my list[-1], and so forth.

Elements in lists can be deleted, and new elements can be inserted anywhere. The functionality
for doing this is built into the list object and accessed by a dot notation4.

1 my_list.append (7) # adds 7 to end of my_list

2 my_list.insert (1,0) # inserts element 0 in position 1

3 print(my_list)

4 [2, 0, 3, 5, 7]

5 my_list.pop() # removes last element in list

6 print(my_list)

7 [2, 0, 3, 5]

8 del my_list [1] # deletes second element

9 print(my_list)

10 [2, 3, 5]

1 # Since lists are mutable we can do the following

2 my_list [2] = 4

3 print(my_list)

4 [2, 3, 4]

4.2.3 Slicing

A subsequence of a sequence is called a slice and the operation that extracts a subsequence is called
slicing. Like with indexing, we use square brackets ([]) as the slice operator, but instead of one
integer value inside we have two, separated by a colon (:). If a is a list, the expression a[m : n]
returns the portion of a from index m to, but not including, index n. For example:

1 primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

2 primes [0:3] # yields [2, 3, 5]

3 primes [4:5] # yields [11] - last index is excluded!

4 primes [-3:-1] # yields [23, 29]

3Similar to strings, as they are both sequence types.
4Recall that in modules we can access module functions using dot notation. A list is defined in a module and so

its associated functions can also be accessed using dot notation.

40

If you omit the first index (before the colon), the slice starts at the beginning of the string. If you
omit the second index, the slice goes to the end of the string. Thus:

1 primes [0:] # prints the entire sequence

2 primes [9:] # yields [29, 31]

You can specify a stride - either positive or negative:

1 primes [0:6:2] # Here , 2 is the stride prints

2 [2, 5, 11]

3 primes [6:0: -2]

4 [17, 11, 5]

The syntax for reversing a list works the same way it does for strings:

1 primes [:: -1]

2 [31, 29, 23, 19, 17, 13, 11, 7, 5, 3, 2]

4.2.4 Operators

The in operator returns whether a given element is contained in a sequence. Example:

1 stuff = ['this ', 'that ', 'these ', 'those ']
2 'this ' in stuff

3 True

Notice that in works somewhat differently with strings. It evaluates to True if one string is a
substring of another. When combined with not we get the obvious behavior:

1 stuff = ['this ', 'that ', 'these ', 'those ']
2 'python ' not in stuff

3 True

4 'python ' in stuff

5 False

The + operator is used to denote concatenation. Since the plus sign also denotes addition, Python
determines which operation to perform based on the operand types. Thus the plus sign, +, is
referred to as an overloaded operator. If both operands are numeric types, addition is performed.
If both operands are sequence types, concatenation is performed. The same applies to ∗.

1 stuff = ['this ', 'that ', 'these ', 'those ']
2 stuff + ['them ']
3 ['this ', 'that ', 'these ', 'those ', 'them ']
4 stuff*2

5 ['this ', 'that ', 'these ', 'those ', 'this ', 'that ', 'these ', 'those ']

Operations min/max return the smallest/largest value of a sequence, and sum returns the sum
of all the elements (when of numeric type). len() return the length of the sequence. Finally,
the comparison operator, ==, returns True if the two sequences are the same length, and their
corresponding elements are equal to each other.

41

1 primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

2 stuff = ['this ', 'that ', 'these ', 'those ']
3 min(primes) # 2

4 max(primes) # 31

5 len(primes) # 11

6 len(stuff) # 4

7 min(stuff) # 'that '
8 max(stuff) # 'those '
9 stuff == primes # False

4.2.5 Iterating Over List Elements vs. List Index Values

The for statement can be applied to all sequence types, including lists.

1 # Loop over list elements

2 primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

3 for n in primes:

4 print(n)

When the elements of a list need to be accessed, but not altered, a loop variable that iterates over
each list element is an appropriate approach. However, there are times when the loop variable must
iterate over the index values of a list instead.

1 nums = [10, 20, 30, 40, 50, 60]

2 # Iterate over elemts of list

3 for k in nums:

4 sum = sum + k

5 # Loop over index values

6 for k in range(len(nums)):

7 sum = sum + nums[k]

See the difference?

There are situations in which a sequence is to be traversed while a given condition is true. In
such cases, a while loop is the appropriate control structure. Let’s say that we need to determine
whether the value 40 occurs in list nums above. In this case, once the value is found, the traversal
of the list is terminated.

1 nums = [10, 20, 30, 40, 50, 60]

2 k = 0

3 wanted = 40

4 found = false

5 while k < len(nums) and not found:

6 if nums[k] === wanted:

7 found = True

8 else:

9 k += 1

42

4.2.6 List Comprehensions

Because running through a list and for each element creating a new element in another list is
a frequently encountered task, Python has a special compact syntax for doing this, called list
comprehension. The general syntax reads

1 newlist = [E(e) for e in list]

where E(e) represents an expression involving element e. Here are some examples:

1 my_nums = [i*0.5 for i in range (10)]

2 print(my_nums)

3 Out[]:

4 [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5]

The ”long way” of creating my nums is:

1 my_nums = list()

2 for i in range (10):

3 my_nums.append(i*0.5)

So, three lines of code versus one. Other examples:

1 Cdegrees = [-5 + i*0.5 for i in range (10)]

2 print(Cdegrees)

3 Out[]: [-5.0, -4.5, -4.0, -3.5, -3.0, -2.5, -2.0, -1.5, -1.0, -0.5]

4

5 Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]

6 print(Fdegrees)

7 Out[]: [23.0 , 23.9, 24.8, 25.7, 26.6, 27.5, 28.4, 29.3, 30.2, 31.1]

8

9 S = [x**2 for x in range (10)]

10 print(S)

11 Out[]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

12

13 M = [x for x in S if x % 2 == 0]

14 print(M)

15 Out[]: [0, 4, 16, 36, 64]

Note in the last example we have an if condition within the loop. You should become familiar with
this notation.

4.2.7 Traversing Multiple Lists Simultaneously

It happens quite frequently that two or more lists need to be traversed simultaneously. As an
alternative to the loop over indices, Python offers a special nice syntax that can be sketched as

1 for list1 , list2 , list3 ... in zip(list1 , list2 , list3 , ...):

2 # work with element e1 from list1 , element e2 from list2 , etc...

The zip function turns n lists (list1, list2, list3, ...) into one list of n− tuples, where each n− tuple
(e1,e2,e3,...) has its first element (e1) from the first list (list1), the second element (e2) from the
second list (list2), and so forth. The loop stops when the end of the shortest list is reached.

43

4.2.8 Copying Lists

Because of the way that lists are represented in Python, when a variable is assigned to another
variable holding a list, list2 = list1, each variable ends up referring to the same instance of the list
in memory. This is a referred to as a shallow copy and has important implications. For example,
if an element of list1 is changed, then the corresponding element of list2 will change as well,

1 list1 = [10, 20, 30, 40]

2 list2 5 list1

3 list1 [0] = 5

4 print(list1)

5 [5, 20, 30, 40] # change made in list1

6 print(list2)

7 [5, 20, 30, 40] # change in list1 causes a change in list2

Knowing that variables list1 and list2 refer to the same list explains this behavior. This issue does
not apply to strings and tuples, since they are immutable and therefore cannot be modified. When
needed, a copy of a list can be made as given below,

1 list1 = [10, 20, 30, 40]

2 list2 = list(list1)

3 list1 [0] = 5

4 print(list1)

5 [5, 20, 30, 40] # change made in list1

6 print(list2)

7 [10, 20, 30, 40] # change in list1 does NOT cause a change in list2

When copying lists that have sublists, another means of copying, called deep copy, may be needed.

When a variable is assigned to another variable holding a list, each variable

ends up referring to the same instance of the list in memory.

Python has a module called copy to perform these types of copy operations.

1 # importing "copy" for copy operations

2 import copy

3 list1 = [1, 2, [3,5], 4]

4 # using copy to shallow copy

5 shallow_copy = copy.copy(list1)

6 # using deepcopy to deep copy

7 deep_copy = copy.deepcopy(list1)

4.3 Tuples

Python provides another sequence type that is an ordered collection of objects, called a tuple.
Tuples are identical to lists in all respects, except for the following properties:

• Tuples are defined by enclosing the elements in parentheses (()) instead of square brackets
([]).

44

• Tuples are immutable.

Examples:

1 empty_tuple = ()

2 # or

3 empty_list = tuple () # list() constructor

4 my_tuple = (2, 3, 5, 'cat', 'dog')
5

6 my_tuple [0] = 1

7 Out []:

8 TypeError: 'tuple ' object does not support item assignment

If we attempt to change my tuple:

1 my_tuple [0] = 1

2 Out []:

3 TypeError: 'tuple ' object does not support item assignment

showing that tuples are immutable.

Tuples have fewer methods than lists. In fact, the only regular methods are count and index:

1 # List methods:

2 ['append ',
3 'clear ',
4 'copy ',
5 'count ',
6 'extend ',
7 'index ',
8 'insert ',
9 'pop',

10 'remove ',
11 'reverse ',
12 'sort ']
13 # Tuple methods:

14 ['count ',
15 'index ']

The rest of the list methods are not available for tuple because they modify the object, and tuples,
being immutable, cannot be modified.

4.3.1 Why use a tuple instead of a list

• Program execution is faster when manipulating a tuple than it is for the equivalent list.

• Sometimes you don’t want data to be modified. If the values in the collection are meant to
remain constant for the life of the program, using a tuple instead of a list guards against
accidental modification.

45

• There is another Python data type that you will encounter shortly, called a dictionary, which
requires as one of its components a value that is of an immutable type. A tuple can be used
for this purpose, whereas a list can’t be.

4.3.2 Nested Data Structures

Lists and tuples can contain elements of any type, including other sequences. Thus, lists and tuples
can be nested to create arbitrarily complex data structures. Examples:

1 class_grades = [[85, 91, 89], [78, 81, 86], [62, 75, 77]]

2 mixed_nested_list = [[4, [True , False], 6, 8], [888.0 , 999.0]]

3 tuple_with_list = (1, [2, 3], 4, 5)

Note that in the last example the tuple contains the list [2,3]. Lists are mutable and thus can be
changed and so we could change [2,3] to, say, [2,4]. Tuples, on the other hand, are immutable. Try
it. Does that mean that tuples are not really immutable? How can you show that the tuple is
indeed immutable?

46

Chapter 5

Dictionaries and Sets

5.1 Sets

A mathematical set is a collection of values without duplicates or order. In sets

• Order does not matter, i.e. { 1, 2, 3 } == { 3, 2, 1 }

• There are no duplicate entries: { 3, 1, 4, 1, 5 } == { 5, 4, 3, 1 }

A Python set is an unordered collection of unique and immutable objects.

5.1.1 Properties

• Set elements must be immutable values.

• The set itself is mutable, that is we can add and remove elements.

• Only set operations change the set

• Aside: frozenset must contain immutable values and is itself immutable (cannot add and
remove elements)

5.1.2 Initialization

There are two ways to initialize sets. The first way is to use direct mathematical syntax with curly
braces:

1 odd = {1,3,5}

2 # We can also use the default constructor to initialize an empty set

3 empty = set()

Unfortunately you cannot use {} to express empty set. The second way is to construct a set from
a list (or a tuple or a string):

47

1 odd = set([1,3,5])

2 primes = set ([2 ,3,5])

3 fruits = {"apple", "banana", "cherry"}

5.1.3 Set operations

Given the sets odd and primes above we can easily understand set operations:

membership ∈ Python:in 4 in primes ⇒ False
union ∪ Python:| odd | primes ⇒ {1,2,3,5}

intersection ∩ Python:& odd & primes ⇒ {3,5}
difference − Python:- odd - primes ⇒ {1}

symmetric difference Python:ˆ odd ˆ primes ⇒ {1,2}

Note that we can do iteration over sets

1 for n in primes:

2 print(n)

But we cannot index into a set to access a specific element

1 print [1] # illegal

Why? Because sets are unordered.

5.1.4 Modifying a Set

Add element to a set

1 primes.add (7)

2 # or

3 primes = primes | {7}

Remove element from a set

1 primes.remove (2)

2 # or

3 primes = primes - {2}

Remove an arbitrary element from a set

1 primes.pop()

Try the following:

1 z = {5, 6, 7, 8}

2 y = {1, 2, 3, "foo", 1, 5}

3 k = z & y

4 j = z | y

5 m = y - z

48

6 n = z - y

7 p = z

8 q = set(z)

9 z.add(9)

Example: Find the common element in both list1 and list2.

1 # Using lists and loops:

2 list1 = [1,2,3,4,5,6,7,8]

3 list2 = [2,4,6,8]

4 out1 = []

5 for i in list2:

6 if i in list1:

7 out1 .append(i)

8

9 # Using list comprehensions would reduce the last 4 lines into 1:

10 out1 = [i for i in list2 if i in list1]

Using sets you would perform the following operation: set1 & set2:

1 list1 = [1,2,3,4,5,6,7,8]

2 list2 = [2,4,6,8]

3 out1 = set(list1) & set(list2)

How would you find elements in either list1 or list2 (or both) (without duplicates)? set1 | set2
How would you find elements in either list1 or list2 but not in both? set1 ˆ set2

5.2 Dictionaries

So far we have stored information in various types of objects, such as numbers, strings, list, and
arrays. A dictionary is a very flexible object for storing various kind of information1.

A dictionary is a mapping that stores keys with associated values.

For every key in a dictionary, there is exactly one value associated with it.

Recall that a list is a collection of objects indexed by an integer going from 0 to the number of
elements minus one. Instead of looking up an element through an integer index, it can be more
handy to use a text. Roughly speaking, a list where the index can be a text is called a dictionary in
Python. Other computer languages use other names for the same thing: HashMap, hash, associative
array, or map.

5.2.1 Properties

• Dictionaries are mutable objects.

• Order does not matter.

1And in particular when reading files, to be discussed later.

49

• Given a key, can look up a value. Given a value, cannot lookup its key.

• There are no duplicate keys but or or more keys may map to the same value.

• Keys must be immutable

5.2.2 Initialization

Dictionaries are enclosed in curly braces {}. There are two ways to initialize them.

1 d = {} # an empty dictionary

2 d = dict() # constructor

Examples of dict() syntax:

1 # Temperatures:

2 daily_temps = {'sun': 68.8,

3 'mon': 70.2,

4 'tue': 67.2,

5 'wed': 71.8,

6 'thur ': 73.2,

7 'fri': 75.6,

8 'sat': 74.0}

9

10 # Population of cities (in millions)

11 population = {"Chicago":2.7, "New York":8.17 , "Rome":2.87 ,

12 "Paris":2.24 , "London":8.78}

13

14 # HTTP response status codes

15 status = {200:"ok", 404:"not found", 400:"bad request"}

16

17 # Keys must be unique but values may be duplicated.

18 id_to_grades = {'A1': 80, 'A2': 90, 'A3': 90}

19

20 # A dictionary can have keys of different types. For example ,

21 # one key can be of type int and another of type str:

22 d = {'apple ': 1, 3: 4}

Note that (key,value) pairs are separated by a colon(:).

5.2.3 Dictionary Operations

Let’s consider the first example above. Dictionary daily temps stores the average temperature for
each day of the week. Each temperature has associated with it a unique key value (’sun’, ’mon’,
etc.). Strings are often used as key values. The syntax for accessing an element of a dictionary is
the same as for accessing elements of sequence types, except that a key value is used within the
square brackets instead of an index value: daily temps[’sun’].

50

Python dictionaries use index-like notation to refer to the value associated

with key in a dictionary d: d[key]

Although the elements of the dictionary data structure are physically ordered, the ordering is
irrelevant to the way that the structure is utilized. The location that an element is stored in and
retrieved from within such a data structure depends only on its key value, thus there is no logical
first element, second element, and so forth2. Let’s see how we can use daily temps:

1 if daily_temps['sun'] > daily_temps['sat']:
2 print('Sunday was the warmer weekend day')
3 else:

4 if daily_temps['sun'] < daily_temps['sat']:
5 print('Saturday was the warmer weekend day')
6 else:

7 print('Saturday and Sunday were equally warm ')

Although strings are often used as key values, any immutable type may be used as well, such as a
tuple. In this case, the temperature for a specific date is retrieved by,

temps[(’Feb’, 5, 2019)] -> 70.0

Note that this key contains both string and integer values.

What follows is a summary some of the basic operations for a dictionary d.

d[key] Get value for key in dictionary.
d[key] = value Set value for key in dictionary d to be value.

len(d) Number of key-value pairs in d.
key in d True if key has an entry in d; otherwise, False.

key not in d True if key does not have an entry in d; otherwise, False.
del d[key] Delete entry for key in d. Raises KeyError if key is not in d.
sorted(d) Return sorted list of keys in d. Use sorted(d, key=d.get) to sort the keys by value.

Accessing dictionary elements:

1 atomic_number = {"H":1, "Fe":26, "Au":79}

2 atomic_number["Au"] # prints 79

3 atomic_number["B"] # prints KeyError

Dictionary functions:

1 atomic_number = {"H":1, "Fe":26, "Au":79}

2 atomic_number.keys() # prints dict_keys (['H', 'Fe ', 'Au '])
3 atomic_number.values () # prints [1, 79, 26]

4 atomic_number.items() # print dict_items ([('H', 1), ('Fe ', 26), ('Au
', 79)])

2The specific location that a value is stored is determined by a particular method of converting key values into
index values called hashing.

51

Dictionaries are iterable objects and can therefore be looped over using a for loop:

1 atomic_number = {"H":1, "Fe":26, "Au":79}

2

3 # Print out all the keys:

4 for element_name in atomic_number.keys():

5 print(element_name)

6 # Print out all the values:

7 for element_number in atomic_number.values ():

8 print element_number

9 # Print out the keys and the values

10 for (element_name , element_number) in atomic_number.items():

11 print("name:", element_name ,"number:", element_number)

Modifying a dictionary:

1 us_wars1 = {

2 "Revolutionary" : [1775 , 1783] ,

3 "Mexican" : [1846 , 1848] ,

4 "Civil" : [1861 , 1865] }

5 us_wars1["WWI"] = [1917 , 1918] # add mapping

6 del us_wars1["Civil"] # remove mapping

Inverting a dictionary: How do we reverse key with value in a dictionary? Here’s one approach:

1 d = {5:25 , 6:36, 7:49}

2 k ={}

3 for i in d.keys():

4 k[d[i]] = i

5 print(k)

6 Out []:

7 {25: 5, 36: 6, 49: 7}

Try these on your own:

1 squares = { 1:1, 2:4, 3:9, 4:16 }

2 squares [3] + squares [3]

3 squares [3 + 3]

4 squares [2] + squares [2]

5 squares [2 + 2]

52

Chapter 6

Functions

So far, we have limited ourselves to using only the most fundamental features of Python - variables,
expressions, control structures, and data structures. In theory, these are the only instructions
needed to write any program (that is, to perform any computation). From a practical point-of-
view, however, these instructions alone are not enough.

The problem is one of complexity. In order to manage the complexity of a large problem, it is
broken down into smaller subproblems. Then, each subproblem can be focused on and solved
separately. In programming, we do the same thing. Programs are divided into manageable pieces
called program routines (or simply routines). Doing so is a form of abstraction in which a more
general, less detailed view of a system can be achieved. In addition, program routines provide the
opportunity for code reuse, so that systems do not have to be created from ”scratch”. Routines,
therefore, are a fundamental building block in software development.

6.1 Functions

In Python program routines are called functions. Python functions are similar to the mathematical
functions that you are familiar with but they are much more. A function is a collection of statements
that you can execute wherever and whenever you want in the program. You may send variables to
the function to influence what is getting computed by statements in the function, and the function
may return new objects. In particular, functions help to avoid duplicating code snippets by putting
all similar snippets in a common place1. This strategy saves typing and makes it easier to change
the program later. Functions are also often used to just split a long program into smaller, more
manageable pieces, so the program and your own thinking about it become clearer. Python comes
with lots of functions2 and we have met several so far.

1 # Built -in functions

2 print('hi!')
3 len("hello")

4 pow(2,3)

5 str (17)

1Also known as the Don’t Repeat Yourself (DRY principle).
2Built-in functions are always available an do not need to be imported. Other functions come from modules, like

math or random.

53

6 int(input("enter integer: "))

7 range (1,5)

8

9 # functions from modules

10 import math

11 math.sin(math.pi)

12 import random

13 random.random () # this one needs no input

6.1.1 Defining Functions

In addition to the built-in or imported functions of Python, there is the capability to define new
functions and that makes programming so much more exciting.

A Python function is a named group of statements that accomplishes some task.

The elements of a function definition are:

1 def a_good_name(arg1 , arg2 , arg3 ...): # HEADER

2 # Python statements

3 return value(s) # RETURN VALUE(S)

The first line of a function definition is the function header. A function header starts with the
keyword def, followed by an identifier, which is the function’s name3. The function name is followed
by a comma-separated (possibly empty) list of identifiers (arg1, arg2, arg3...) called parameters.
The actual values passed to the function are called arguments. Following the parameter list is a
colon (:). Following the function header is the body of the function or program block containing
the function’s instructions. As with all blocks, the statements must be indented at the same level,
relative to the function header.

6.1.2 Docstrings

There is a convention in Python to insert a documentation string right after the def line of the
function definition. The documentation string, known as a docstring, should contain a short
description of the purpose of the function and explain what the different arguments and return
values are. Interactive sessions from a Python shell are also common to illustrate how the code
is used. Docstrings are usually enclosed in triple double quotes (three double-quote ” characters),
which allow the string to span several lines.

1 def line(x0 , y0 , x1 , y1):

2 """

3 Compute the coefficients a and b in the mathematical

4 expression for a straight line y = a*x + b that goes

5 through two points (x0 , y0) and (x1 , y1).

6 x0 , y0: a point on the line (floats).

3Function names are important. Be careful of very short names: f(x) is almost always too vague and eventually
you will have a hard time knowing or remembering what it does.

54

7 x1 , y1: another point on the line (floats).

8 return: coefficients a, b (floats) for the line (y=a*x+b). """

9 a = (y1 - y0)/float(x1 - x0)

10 b = y0 - a*x0

11 return a, b

Note that the docstring must appear before any statement in the function body.

The docstring can be accessed in a code as funcname. doc , where funcname is the name of the
function, e.g.,

1 print(line.__doc__)

The print() above will print out the documentation of the line() function. More importantly, one
can use help to print the documentation:

1 help(line)

2

3 # yields

4

5 Help on function line in module __main__:

6

7 line(x0 , y0 , x1 , y1)

8 Compute the coefficients a and b in the mathematical

9 expression for a straight line y = a*x + b that goes

10 through two points (x0 , y0) and (x1 , y1).

11 x0 , y0: a point on the line (floats).

12 x1 , y1: another point on the line (floats).

13 return: coefficients a, b (floats) for the line (y=a*x+b).

6.1.3 Value-Returning Functions

A value-returning function is one called for its return value, and is therefore similar to a mathe-
matical function. Take the simple mathematical function f(x) = 2x. In this notation, x stands for
any numeric value that function f may be applied to, for example, f(2) = 2(2) = 4:

1 def f(x): # x is a parameter

2 return 2*x

Note there is a keyword return to specify what result to return. After return we have an expression
that holds the returned value.

Of course Python functions may return more than one value. So, if we are interested in writing a
function that returns the roots of a quadratic equation then we will need to return two values.

6.1.4 Non-Value-Returning Functions

A non-value-returning function is called not for a returned value, but for its side effects. A side
effect is an action other than returning a function value, such as displaying output on the screen.

55

1 def print_hello ():

2 print("Hello , world")

Note that print hello() has an empty parameter list and no return statement.

6.1.5 Calling Functions

Every function has the capacity to perform a task, but it only performs that task when it is called.
A function call requests execution of the function with particular arguments passed as the values
for its parameters (if any). The syntax of a function call is:

1 output = name(arg1 , arg2 , ...)

When this expression appears in a program statement that is being executed, the function called
name executes, using the argument values inside parentheses as the values of its parameters and
returns the values specified inside the function: output above must match the number of values
returned by the functions. Examples:

1 def square(x): # x is a parameter

2 return x * x

3 sq = square (2) # 2 is an argument , function returns sq=4

4

5 def my_sum(x, y):

6 return x + y

7 sum = my_sum (2,3) # returns sum=5

8

9 def quadratic_roots(a, b, c):

10 # some code to solve quadratic formula

11 return x1, x2

12 root1 , root2 = quadratic_roots (1, -1, 1)

Note that in the last function, quadratic roots, we need two values on the left-hand side of the
assignment operator because the function returns two values

Note that there is a fundamental difference in the way that value-returning and non-value-returning
functions are called:

1 def print_hello ():

2 print("Hello , world")

3

4 # calling print_hello ()

5 print_hello ()

6 Out []:

7 Hello , world

Although print hello() does not return a value and thus there is no left-hand-side (no variable
assigned to the returned value), there is still a value returned! That value is None. None defines
a null object and is the default return value in functions without a return statement. To see this
effect we can attempt to print the function call itself:

1 print(print_hello ())

56

2 Out []:

3 Hello , world

4 None

6.1.6 Parameter Passing

Parameter passing is the process of passing arguments to a function. As we have seen, actual
arguments are the values passed to a function’s formal parameters to be operated on. For example,
consider the following program (you should run it):

1 def ordered(n1 , n2): # n1 , n2 are parameters

2 return n1 < n2 # returns either True or False

3

4 num1 = int(input('Enter num1: '))
5 num2 = int(input('Enter num2: '))
6

7 if ordered(num1 , num2): # num1 , num2 are arguments

8 print('First number is smaller ')
9 else:

10 if ordered(num2 , num1):

11 print('First number is larger ')
12 else:

13 print('Numbers are equal ')

In this example, function ordered is called once with arguments num1, num2 and a second time
with arguments num2, num1. There is one important observation:

The correspondence of arguments and parameters is determined by the order of the

arguments passed, and not their names.

6.1.7 Keyword Arguments

The functions we have looked at so far were called with a fixed number of positional arguments.
A positional argument is an argument that is assigned to a particular parameter based on its
position in the argument list, as shown below.

1 def mortgage_rate(amount , rate , term):

2 # some calculations

3 return some_value

4 monthly_payment = mortgage_rate (350000 , 0.06, 20)

This function computes and returns the monthly mortgage payment for a given loan amount
(amount), interest rate (rate), and number of years of the loan (term).

Python provides the option of calling any function by the use of keyword arguments. A keyword
argument is an argument that is specified by parameter name, rather than as a positional argument
as shown below:

1 monthly_payment = mortgage_rate(rate =0.06 , term=20, amount =350000)

57

This can be a useful way of calling a function if it is easier to remember the parameter names than
it is to remember their order. It is possible to call a function with the use of both positional and
keyword arguments. However, all positional arguments must come before all keyword arguments
in the function call, as shown below:

1 monthly_payment = mortgage_rate (350000 , rate =0.06 , term =20)

This form of function call might be useful, for example, if you remember that the first argument is
the loan amount, but you are not sure of the order of the last two arguments rate and term.

6.1.8 Default Arguments

Python also provides the ability to assign a default value to any function parameter allowing for the
use of default arguments. A default argument is an argument that can be optionally provided,
as shown here:

1 def mortgage_rate(amount , rate , term =20):

2 # some calculations

3 return some_value

4 monthly_payment = mortgage_rate (350000 , 0.06)

In this case, the third argument in calls to function mortgage rate is optional. If omitted, parameter
term will default to the value 20 (years) as shown. If, on the other hand, a third argument is
provided, the value passed replaces the default parameter value.

Now try the following making sure you understand how the program works:

1 def addup(first , last , incr=-1):

2 if first > last:

3 sum = -1

4 else:

5 sum = 0

6 for i in range(first , last+1, incr):

7 sum = sum + i

8 return sum

9 addup(1, 10)

10 addup(1, 10, 2)

11 addup(first=-1, last = -10)

12 addup(incr=-2, first=-1, last = -10)

6.1.9 Variable Scope

A local variable is a variable that is only accessible from within a given function. Such variables
are said to have local scope. In Python, any variable assigned a value in a function becomes a
local variable of the function. Consider the following

1 def func1():

2 n = 10

3 print('func1 ',n)

58

4 def func2():

5 n = 20

6 print('func2 ',n)
7 func1 ()

8 print('func2 ',n)
9 func2()

10 Out []:

11 func2 20

12 func1 10

13 func2 20

Both func1 and func2 contain identifier n. Function func1 assigns n to 10, while function func2
assigns n to 20. Both functions display the value of n when called - func2 displays the value of n
both before and after its call to func1. If identifier n represents the same variable, then shouldn’t
its value change to 10 after the call to func1? However, as shown by the output, the value of n
remains 20. This is because there are two distinct instances of variable n, each local to the function
assigned in and inaccessible from the other.

Now try commenting out n = 10 in func1() and re-run the above. In that case you will get an error
indicating that variable n is not defined within func1. This is because variable n defined in func2
is inaccessible from func1. (In this case, n is expected to be a global variable).

The period of time that a variable exists is called its lifetime. Local variables are automatically
created (allocated memory) when a function is called, and destroyed (deallocated) when the function
terminates. Thus, the lifetime of a local variable is equal to the duration of its function’s execution.
Consequently, the values of local variables are not retained from one function call to the next.

The concept of a local variable is an important one in programming. It allows variables to be
defined in a function without regard to the variable names used in other functions of the program.
It also allows previously written functions to be easily incorporated into a program. The use of
global variables, on the other hand, brings potential havoc to programs4.

6.1.10 Functions as Arguments to Functions

One frequently needs to have functions as arguments in other functions. For example:

1 from math import log , e

2 def silly_func(f, x):

3 return f(x)

4 def func(x):

5 return silly_func(math.log , x)

6 func(math.e)

7 Out []:

8 1.0

This is indeed a silly example just to illustrate how a function, in this case the natural log, can be
passed to another function.

4For this reason, the use of global variables is generally considered to be bad programming style.

59

A Calculus Example

More commonly, we need Python functions as arguments whenever we do the following:

1. numerical root finding: solve f(x) = 0 approximately

2. numerical differentiation: compute f ′(x) = 0 approximately

3. numerical integration: compute
∫ b
a f(x)dx approximately

4. numerical solution of differential equations: dx
dy = f(x)

In such Python functions we need to have the f(x) function as an argument f . For example,
consider a function for computing the second-order derivative of a function f(x) numerically:

f ′′(x) ≈ f(x− h)− 2f(x) + f(x+ h)

h2
(6.1)

where h is a small number. The approximation 6.1 becomes exact in the limit h → 0. A Python
function for f”(x) can be implemented as follows:

1 def diff2(f, x, h=1E-6):

2 """

3 approximation of the second -order derivative of a function

4 """

5 r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h)

6 return r

The f argument is like any other argument, i.e., a name for an object, here a function object that
we can call as we normally call function objects. An application of diff2 can read

1 # This is the function that we want to take the derivative of

2 def g(t):

3 return t**3

4 t = 1.0

5 d2g = diff2(g, t)

6 print("g({}) ={:.8f}".format(t, d2g))

7 # prints

8 g(1.0) =5.9996 # Note the exact value is 6.0

Now, we know that the approximation formula 6.1 becomes more accurate as h decreases. Let’s
try to show this:

1 for k in range (1,15):

2 h = 10**(-k) # we will decrease the value of h

3 d2g = diff2(g, 1, h)

4 print("h = {}, g({}) ={:.8f}".format(h, t, d2g))

5 # prints:

6 h = 0.1, g(1.0) =6.00000000

7 h = 0.01, g(1.0) =6.00000000

8 h = 0.001 , g(1.0) =6.00000000

60

9 h = 0.0001 , g(1.0) =5.99999999

10 h = 1e-05, g(1.0) =6.00000272

11 h = 1e-06, g(1.0) =5.99964523

12 h = 1e-07, g(1.0) =6.03961325

13 h = 1e-08, g(1.0) =2.22044605

14 h = 1e-09, g(1.0) =444.08920985

15 h = 1e-10, g(1.0) =0.00000000

16 h = 1e-11, g(1.0) =0.00000000

17 h = 1e-12, g(1.0) =444089209.85006267

18 h = 1e-13, g(1.0) = -44408920985.00625610

19 h = 1e-14, g(1.0) =0.00000000

The mathematical result in equation 6.1 gives a better approximation to f ′′(x) as h gets smaller
and smaller but for h < 10−8 our computational results are totally wrong. The problem is that for
small h, round-off errors in the formula 6.1 blow up and destroy the accuracy. Or more precisely,
the result holds until h in the present case reaches 10−6.

The reason for the inaccuracy is that the numerator in 6.1 contains subtraction of quantities that
are almost equal. The result is a very small and inaccurate number. The inaccuracy is magnified
by h−2, a number that becomes large for small h. Switching from the standard floating-point
numbers (float) to numbers with arbitrary high precision resolves the problem. Python has a
module decimal that can be used for this purpose.

6.1.11 The Main Program

In programs containing functions we often refer to a part of the program as the main program.
This is the collection of all the statements outside the functions, plus the definition of all functions.
Let us look at a complete program:

1 from math import exp , sin , pi # in main

2 def f(x): # in main

3 e = exp(-0.1*x)

4 s = sin(6*pi*x)

5 return e*s

6 x= 2 # in main

7 y= f(x) # in main

8 print('f({:.4f}) ={:.4f}'.format(x, y)) # in main

The main program here consists of the lines with the comment ”in main”. The execution always
starts with the first line in the main program. When a function is encountered, its statements are
just used to define the function - nothing gets computed inside the function before we explicitly
call the function, either from the main program or from another function. All variables initialized
in the main program become global variables. One should alway avoid global variables. In our
example we can do that by defining yet another function called main as follows:

1 from math import exp , sin , pi

2 def f(x):

3 e = exp(-0.1*x)

4 s = sin(6*pi*x)

5 return e*s

61

6 def main():

7 x= 2

8 y= f(x)

9 print('f({:.4f}) ={:.4f}'.format(x, y))

10 main()

11

12 Out []:

13 f(2.0000) = -0.0000

Note that the main program is also a function which we can call like any other function. This
approach can be very useful when creating larger scripts.

6.1.12 Lambda Functions

There is a quick one-line construction of functions that is sometimes convenient:

1 f = lambda x: x**2 + 4

This lambda function is equivalent to writing

1 def f:

2 return x**2 + 4

In general,

1 def g(arg1 , arg2 , arg3 , ...):

2 return expression

can be written as

1 g = lambda arg1 , arg2 , arg3 , ...: expression

Lambda functions are generally used to quickly define a function as argument to another function.
Because lambda functions can be defined ”on the fly” and thereby save typing of a separate function
with def and an intended block, lambda functions are popular among many programmers.

6.2 A Bioinformatics Example

The genetic code of all living organisms are represented by a long sequence of simple molecules called
nucleotides, or bases, which makes up the Deoxyribonucleic acid, better known as DNA. There are
only four such nucleotides, and the entire genetic code of a human can be seen as a simple, though
3 billion long, string of the letters A, C, G, and T. Analyzing DNA data to gain increased biological
understanding is much about searching in (long) strings for certain string patterns involving the
letters A, C, G, and T. This is an integral part of bioinformatics, a scientific discipline addressing
the use of computers to search for, explore, and use information about genes, nucleic acids, and
proteins.

62

6.2.1 Counting Letters in DNA Strings

Given some string dna containing the letters A, C, G, or T, representing the bases that make up
DNA, we ask the question: how many times does a certain base occur in the DNA string? For
example, if dna is ATGGCATTA then we ask how many times the base A occurs in this string.
In the simple case the answer is 3.

How can we implement this in Python? The most straightforward solution is to loop over the letters
in the string, test if the current letter equals the desired one, and if so, increase a counter. Looping
over the letters is obvious if the letters are stored in a list. This is easily done by converting a
string to a list:

1 def count_str0(dna , base):

2 dna = list(dna) # convert string to list of letters

3 i = 0 # counter

4 for c in dna:

5 if c == base:

6 i += 1

7 return i

8 dna = "ATGCGGACCTAT"

9 base = "C"

10 count = count_str0(dna , base)

11 print("{} appears {:d} times in {}".format(base , n, dna))

NOTE It is fundamental for correct programming to understand how to simulate a program
by hand, statement by statement. Two tools are effective for helping you reach the required
understanding of performing a simulation by hand: (i) printing variables, (ii) using a debugger.5

You may have noticed that converting the string dna to a list is actually unnecessary as we can
just iterate over the string (after all it is a sequence):

1 def count_str1(dna , base):

2 i = 0 # counter

3 for c in dna:

4 if c == base:

5 i += 1

6 return i

7 dna = "ATGCGGACCTAT"

8 base = "C"

9 count = count_str1(dna , base)

10 print("{} appears {:d} times in {}".format(base , n, dna))

The same problem can be solved using a for loop to iterate over the DNA string:

1 def count_str2(dna , base):

2 i = 0 # counter

3 for j in range(len(dna)):

4 if dna[j] == base:

5 i += 1

6 return i

5The Python Tutor can be, at least for small programs, a splendid alternative to debuggers.

63

7 dna = "ATGCGGACCTAT"

8 base = "C"

9 count = count_str2(dna , base)

10 print("{} appears {:d} times in {}".format(base , count , dna))

Do you see the difference with the earlier solution? Can you think of another way to solve the
problem (perhaps using a while loop)?

Note that a common theme in the count str algorithms is that we need to check when the letter we
search for is found in the DNA string. Thus, the idea could be to create a list found where each
element is True if the base is found in the DNA string. The number of True values, i.e. the length
of the list, is the number of letters of the base in the DNA. Consider the following:

1 def count_str3(dna , base):

2 found = [] # matches for base in dna: found[i]=True if dna[i]==

base for c in dna:

3 for c in dna:

4 if c == base:

5 found.append(True)

6 else:

7 found.append(False)

8 return sum(found) # note we are using sum here

9 dna = "ATGCGGACCTAT"

10 base = "C"

11 count = count_str3(dna , base)

12 print("{} appears {:d} times in {}".format(base , count , dna))

Finally we can use boolean values directly, as follows:

1 def count_str4(dna , base):

2 found = []

3 for c in dna:

4 found.append(c == base)

5 return sum(found) # note we are using sum here

6 dna = "ATGCGGACCTAT"

7 base = "C"

8 count = count_str4(dna , base)

9 print("{} appears {:d} times in {}".format(base , count , dna))

Finally, let’s try Python’s library.

1 def count_str5(dna , base):

2 return dna.count(base)

3 dna = "ATGCGGACCTAT"

4 base = "C"

5 count = count_str5(dna , base)

6 print("{} appears {:d} times in {}".format(base , count , dna))

There are probably a few other ways to solve this problem. There are two lessons here:

• There may be multiple ways, i.e. algorithms, to solve a problem.

64

• Depending on the problem, you may want to choose the most efficient algorithm.

Deciding what constitutes an efficient algorithm is beyond the scope of this course. However, we
can explore one measure of efficiency: the CPU time, i.e. which one of the above implementations
is the fastest? To answer the question we need some test data, which should be a huge string of
DNA.

Generating Random DNA Strings. The simplest way of generating a long string is to repeat
a character a large number of times:

1 N=1000000

2 dna = 'A'*N

The resulting string is just AAA...A, of length N, which is fine for testing the efficiency of Python
functions. Nevertheless, it is more exciting to work with a DNA string with letters from the whole
alphabet A, C, G, and T. To make a DNA string with a random composition of the letters we can
first make a list of random letters and then join all those letters to a string:

1 import random

2

3 def generate_string(N, alphabet='ACGT '):
4 my_list = []

5 for i in range(N):

6 my_list.append(random.choice(alphabet))

7 return ''.join(my_list) # this returns a string

8 # test

9 print(generate_string (10)) # will be "random"

10 dna = generate_string (10000000) # 1e7 letters

In the snippet above, the random.choice(alphabet) function selects an element in the list alphabet
at random. The join function is used to join the elements of the list into a string (see help(dna.join)
for more information).

Measuring CPU Time. Our next goal is to see how much time the various count * functions
spend on counting letters in a huge string, which is to be generated as shown above. Measuring
the time spent in a program can be done by the time module:

1 import time

2 ...

3 t0 = time.clock ()

4 # do stuff

5 t1 = time.clock ()

6 cpu_time = t1 - t0

The time.clock() function returns the CPU time spent in the program since its start. If the interest
is in the total time, also including reading and writing files, time.time() is the appropriate function
to call. For small bits of code one can use the timeit module. Running through all our functions
made so far and recording timings can be done as follows:

1 import time

2 functions = [count_str0 ,

3 count_str1 ,

65

4 count_str2 ,

5 count_str3 ,

6 count_str4 ,

7 count_str5]

8 timings = [] # timings[i] holds CPU time for functions[i]

9 for function in functions:

10 t0 = time.process_time ()

11 function(dna , 'A')
12 t1 = time.process_time ()

13 cpu_time = t1 - t0

14 timings.append(cpu_time)

In Python, functions are ordinary objects so making a list of functions is no more special than
making a list of strings or numbers.

We can now iterate over timings and functions simultaneously via zip to make a nice printout of
the results:

1 for cpu_time , function in zip(timings , functions):

2 print ('{f:<9s}: {cpu:.2f} s'.format(f=function.__name__ , cpu=

cpu_time))

3

4 # Timings:

5 count_str0: 0.80 s

6 count_str1: 0.72 s

7 count_str2: 1.27 s

8 count_str3: 1.89 s

9 count_str4: 1.80 s

10 count_str5: 0.05 s

It looks like count str1 - the simple iteration over the string - is the best performer of all the
user-defined functions. However, the built-in count functionality of strings (dna.count(base) in
count str5) runs 14 times faster than the best of the user defined Python functions! The reason is
that the for loop needed to count in dna.count(base) is actually implemented in C and runs very
much faster than loops in Python.

The message is: use the built-in functions if possible.

66

Chapter 7

File IO

Input data for a program often comes from files and the results of the computations are often
written to files. We will discuss how Python can access information in files and how to create new
files. We will focus mainly on text files, that is files that contain data readable by humans. Files
that hold non-text data, also called binary files, are commonly used used over text files to pack
data much more densely and provide much faster access. We will only consider binary files briefly
in this course.

7.1 Reading from a text file

Consider the following directory structure:

|____cds-230

| |____scripts

| |____data

| |____homework

| |____docs

| |____lectures

Suppose we have some measurements in a data file, call it data1.txt, stored in the data folder.
Our goal is to read the the measurement values in data1.txt, find the average value, and print out
the result.

Before trying to let a program read a file, we must know the file format, i.e., what the contents of
the file look like, because the structure of the text in the file greatly influences the set of statements
needed to read the file. We therefore start with viewing the contents of the file data1.txt. To this
end, load the file into a text editor or viewer. What we see is a column with numbers:

21.8

18.1

19

23

26

17.8

67

Our task is to read this column of numbers into a list in the program and compute the average of
the list items. To read from a text file, follow this basic paradigm:

• Open the file for reading.

• Read the line from the file.

• Process the line. In other words, do whatever you need to do with the line.

• Close the file.

To open a file for reading, call the built-in Python function open. It takes two parameters, both
strings. The first parameter gives the name of the file. The second parameter should be the string
”r”, which indicates that you are reading from the file (if absent then ”r” is assumed). The function
returns a reference to an object representing the file.

1 file_object = open(file_name , "r")

For example, to open the file data1.txt for reading - assuming the file is in the same directory where
we are running the Python code:

1 file_name = "data1.txt"

2 in_file = open(file_name , "r")

When the location of a file is in another location, say in the data directory, then you will need to
specify more that the file name, you will need to specify the path of the file. Depending on your
operating system the paths may look different. For example:

1. Linux/Mac: ”/Users/jdoe/cds-230/data/data1.txt”

2. Linux/Mac: ”data/data1.txt”

3. Windows: ”C:\Users\jdoe\My Documents\cds-230\data\data1.txt”

4. Windows: ”\data\data1.txt”

An absolute filename gives a specific location on disk as in (1) or (3) above. A relative filename
gives a location relative to the current working as in (2) or (4) above1. Warning: code will fail
with a FileNotFoundError error if it fails to find the file specified in file name.

So, assuming we are in the cds-230 directory:

1 file_name = "data/data1.txt"

2 in_file = open(file_name , "r")

Of course, you could get that down to a single line:

1 in_file = open("data/data1.txt", "r")

2 print(type(in_file))

3 <class '_io.TextIOWrapper '>

1A relative filename is usually a better choice

68

To read lines from the file, there are two general approaches:

Process entire file at once:

1 all_data_in_one_big_string = in_file.read()

2 print(all_data_in_one_big_string)

3 21.8

4 18.1

5 19

6 23

7 26

8 17.8

This approach can be very useful when you are performing operations on the entire text. We will
get back to this later.

Process one line at a time using a for-loop2

1 for line in in_file:

2 # Do something with line , e.g. print(line)

Here, in each iteration of the loop, the variable line will hold the current line from the file. Notice
that this type of for-loop differs from the for-loops we have already seen, in that what follows in is
not a list, but a reference to a file object.

In a file, each line ends with a newline character, which we indicate in Python by ”\n”. Each line
that you read from the file will be a string containing all the characters in the line, including the
newline character. Note that the newline character, ”\n”, is a non-printing character.

After the file is read, one should close the file object with close().

1 in_file.close()

Instead of reading one line at a time, we can load all lines into a list of strings (lines) by (make
sure you reopen the file):

1 lines = in_file.readlines ()

2 print(lines)

3 ['21.8\n', '18.1\n', '19\n', '23\n', '26\n', '17.8\n']

Note that the output from readlines() allows you to ”see” the ”\n” characters. Using readlines()
is equivalent to:

1 lines = []

2 for line in in_file:

3 lines.append(line)

or the list comprehension:

1 lines = [line for line in in_file]

2Assumption: file is a sequence of lines, i.e. strings.

69

It is important to emphasize that once you have read a file, the file pointer will be positioned
at the end of the file (also known as EOF). Therefore any subsequent read operation will yield
nothing. In that case you will want to rewind the file. In that case you can use the seek() file
function as follows:

1 # open a file

2 # read a file ...

3 # ... I need to read the file again , so rewind

4 in_file.seek (0)

Here seek(0) is moving the file pointer back to the first position, i.e. 0, thus allowing you to read
the file from the start. You can also use seek() to move to any position in the file.

Let’s get back to our task. Once we have the data loaded into a we can compute the average of the
numbers in the file. One way to do this is as follows:

1 mean = 0

2 for number in lines: # lines contain numbers

3 mean = mean + float(number) # convert number to float

4 mean = mean/len(lines)

5 print(mean)

6 20.95

There is one important thing to note in the for loop: float(number). Python’s reading functions
return text, i.e. str objects. But since we need to perform numeric calculations we must convert
the str objects, each line in the list, into numbers by using type casting.

Summing up a list of numbers is often done in numerical programs, so Python has a special function
called sum for performing this task. However, sum must in the present case operate on a list of
floats, not strings. We can use a list comprehension to turn all elements in lines into corresponding
float objects:

1 mean = sum([float(line) for line in lines])/len(lines)

An alternative implementation is to load the lines into a list of float objects directly.

1 in_file = open('data/data1.txt')
2 numbers = [float(line) for line in in_file.readlines ()]

3 in_file.close()

4 mean = sum(numbers)/len(numbers)

5 print(mean)

6 20.95

It is probably clear -or confusing - by now that one problem is solved by many alternative sets of
statements, but this is the very nature of programming. Once we have gained experience we can
judge several alternative solutions to a programming task and choose one that is either particularly
compact, easy to understand, and/or easy to extend later.

7.2 Reading a Mixture of Text and Numbers

The data1.txt file has a very simple structure since it contains numbers only. Many data files
contain a mix of text and numbers. The file data2.txt provides an example (see http://www.

70

http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1
http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1

worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1):

Average rainfall (in mm) in Rome: 1188 months between 1782 and 1970

Jan 81.2

Feb 63.2

Mar 70.3

Apr 55.7

May 53.0

Jun 36.4

Jul 17.5

Aug 27.5

Sep 60.9

Oct 117.7

Nov 111.0

Dec 97.9

Year 792.9

How can we read the rainfall data in this file and extract the values?

The most straightforward solution is to read the file line by line, and for each line split the line into
words, pick out the last (second) word on the line, convert this word to float, and store the float
objects in a list. The complete code, wrapped in a function, may look like this

1 def extract_data(filename):

2 in_file = open(filename)

3 in_file.readline () # skip the first line

4 numbers = []

5 for line in in_file:

6 words = line.split ()

7 number = float(words [1])

8 numbers.append(number)

9 in_file.close()

10 return numbers

11 values = extract_data('data2.txt')
12 print(values)

13 [63.2 , 70.3, 55.7, 53.0, 36.4, 17.5, 27.5, 60.9, 117.7 , 111.0 , 97.9,

792.9]

Note that the first line in the file is just a comment line and of no interest to us. We therefore read
this line by in file.readline(). The for loop over the lines in the file will then start from the next
(second) line.

Can you think of a way to condense the program above?

7.3 With statements

Because things can go wrong when opening a file - for example, it may not exist or it may be
corrupted - it is important to open files carefully so that errors may be handled gracefully. The
recommended way to open a file in Python is to use a with statement. Its syntax is the following:

71

http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1
http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1

1 with expression as variable:

2 # body

What happens when this statement executes is complicated, but when it is used to open a file, the
steps are approximately like this:

1. An attempt is made to open the file.

2. If successful, the open file object is assigned to variable.

3. The body is executed.

4. The file is closed at the end, even if something goes wrong in the body.

The above example would be written as follows:

1 file_name = "data1.txt"

2 with open(file_name) as in_file:

3 for line in in_file:

4 print(line)

You can do all the usual file I/O operations that you would normally do as long as you are within
the with code block. Once you leave that code block, the file handle will close and you will not be
able to use it any more. You no longer have to close the file handle explicitly as the with operator
does it automatically! See if you can change some of the earlier examples from this chapter so that
they use the with method too.

7.4 Writing to a text file

Writing to a file is similar to reading from a file, but it differs in some important ways.

First, you have to open the file for writing. The second parameter to the open function should not
be ”r”. Instead, you have your choice of ”w” or ”a”. If you want to append to a file - that is, add
to the end of an existing file - then choose ”a”. If you want to overwrite the file if it already exists,
choose ”w”. If the file does not exist and you choose ”a”, you get the same effect as choosing ”w”.
So, for example:

1 out_file = open(file_name , "w")

There is nothing special about the name out file; use whatever name you like.

Just as you close a file that you are reading when you are done reading from it, you must close a
file that you are writing when you are done writing to it.

To write to a file, call the write method on the file. This method takes one parameter, a string,
and it writes to the end of the file. If you want a newline in the file, you have to put it into the
string yourself.

Here is an example of writing a file:

72

1 out_file = open("gettysburg.txt", "w")

2 out_file.write("Four score and seven years ago ,\n")

3 out_file.write("our fathers brought forth on this continent , a new

nation ,\n")

4 out_file.write("conceived in Liberty , and dedicated to the

proposition ")

5 out_file.write("that all men are created equal .\n")

6 out_file.close ()

As another example consider writing a table to a file. Suppose we have an array of data

1 data = [[0.75, 0.29619813 , -0.29619813 , -0.75],

2 [0.29619813 , 0.11697778 , -0.11697778 , -0.29619813] ,

3 [-0.29619813 , -0.11697778 , 0.11697778 , 0.29619813] ,

4 [-0.75, -0.29619813 , 0.29619813 , 0.75]]

We iterate through the rows (first index) in the list, and for each row, we iterate through the
column values (second index) and write each value to the file. At the end of each row, we must
insert a newline character in the file to get a linebreak.

1 out_file = open('my_table.dat', 'w')
2 for row in data:

3 for column in row:

4 out_file.write('{:14.8f}'.format(column))
5 out_file.write('\n')
6 out_file.close ()

The resulting data file becomes:

0.75000000 0.29619813 -0.29619813 -0.75000000

0.29619813 0.11697778 -0.11697778 -0.29619813

-0.29619813 -0.11697778 0.11697778 0.29619813

-0.75000000 -0.29619813 0.29619813 0.75000000

7.5 Binary Files

Files that hold photographs, videos, zip files, executable programs, etc. are called binary files: they
are not organized into lines, and cannot be opened with a normal text editor. However, Python
works just as easily with binary files, but when we read from the file we are going to get bytes back
rather than a string. Furthermore, you will find that the contents of a binary file will be, upon
printing, unreadable.

In Python, the binary data is represented using a special type called bytes. The bytes type
represents an immutable sequence of numbers between 0 and 255.

To try to understand this, let’s create a binary version of a simple text file and then try to read it.
In Python reading and writing a binary file is done by appending b to the mode parameter:

1 with open('hello.bin', 'wb') as f:

2 str = b'hello world!' # note the 'b' prefix

73

3 f.write(str)

4

5 with open('hello.bin', 'rb') as f:

6 print(f.read())

7 b'hello world!' # note the 'b' prefix

Note that the input to write() must be of bytes type, i.e. to create a bytes-like object from a string
we prefix the string with a b. Similarly, the output from read is in bytes and so Python prefixes a
b to the string. The b means that those are byte objects. Since bytes are just 1s and 0s we need to
to decode or encode these objects whenever we read or write in binary mode.

Encoding3 and decoding4 refer to an intermediate representation of the text process so that we can
work with data on a computer. After all data are internally represented as 1s and 0s but what
we get when we read a file is numbers and text. There are several encodings and Python uses one
called UTF-8. For the hello.bin data file we do the following:

1 with open('hello.bin', 'rb') as f:

2 data = f.read()

3 text = data.decode('utf -8') # from binary to text

4 print(text)

5 Out []:

6 hello world! # note that there is no 'b'
7

8 with open('hello.bin', 'wb') as f:

9 text = 'hello world!'
10 f.write(text.encode('utf -8')) #from text to binary

The encode and decode functions accept a few parameters. The first and most important one, is
the parameter that will indicate the encoding system. As shown above we used ’utf-8’ to decode
data from binary to text and also ’utf-8’ to encode from text to binary.

Finally, it is important to note that, in our case, binary data happens to contain printable characters,
like alphabets, newline, etc. However, this will not be the case most of the time. It means that with
binary data we cannot reliably use readline() and file object (as an iterator) to read the contents
of a file because might be no newline character in a file. The best way to read binary data is to
read it in chunks using the read() method.

7.6 More on encoding and decoding: Unicode characters

If you find yourself dealing with text that contains non-ASCII5 characters, you have to learn about
Unicode - what it is, how it works, and how Python uses it.

Learning about Unicode is beyond the scope of this class. However, we can try to get a general
idea as to how Python deals with it. First, you must understand the difference between bytes and
characters. In older, ASCII-centric languages and environments, bytes and characters are treated
as the same thing. Since a byte can hold up to 256 values, these environments are limited to 256

3The process of turning abstract symbols into bits
4The process of reading bits (1s and 0s), making sense out of them, and getting back symbols or characters
5Remember that the original ASCII character set encodes128 specified characters into seven-bit integers and can

be used to represent all written text used in the English language.

74

characters. Unicode, on the other hand, has tens of thousands of characters. That means that
each Unicode character takes more than one byte, so you need to make the distinction between
characters and bytes.

Standard Python strings are really byte strings, and a Python character is really a byte. Other
terms for the standard Python type are ”8-bit string” and ”plain string.”

Conversely, a Python Unicode character is an abstract object big enough to hold the character,
analogous to Python’s long integers. You don’t have to worry about the internal representation; the
representation of Unicode characters becomes an issue only when you are trying to send them to
some byte-oriented function, such as the write method for files. At that point, you must choose how
to represent the characters as bytes. Converting from Unicode to a byte string is called encoding
the string. Similarly, when you load Unicode strings from a file or other byte-oriented object, you
need to decode the strings from bytes to characters.

There are many ways of converting Unicode objects to byte strings, each of which is called an
encoding. For a variety of historical, political, and technical reasons, there is no one ”right”
encoding. Every encoding has a case-insensitive name, and that name is passed to the decode
method as a parameter. Here are a few you should know about:

• The UTF-8 encoding can handle any Unicode character. It is also backward compatible with
ASCII, so a pure ASCII file can also be considered a UTF-8 file, and a UTF-8 file that happens
to use only ASCII characters is identical to an ASCII file with the same characters. This
property makes UTF-8 very backward-compatible, especially with older Unix tools. UTF-8
is far and away the dominant encoding on Unix. Its primary weakness is that it is fairly
inefficient for Eastern texts.

• The UTF-16 encoding is favored by Microsoft operating systems and the Java environment.
It is less efficient for Western languages but more efficient for Eastern ones. A variant of
UTF-16 is sometimes known as UCS-2.

• The ISO-8859 series of encodings are 256-character ASCII supersets. They cannot support
all of the Unicode characters; they can support only some particular language or family of
languages. ISO-8859-1, also known as Latin-1, covers most Western European and African
languages, but not Arabic. ISO-8859-2, also known as Latin-2, covers many Eastern European
languages such as Hungarian and Polish.

If you want to be able to encode all Unicode characters, you probably want to use UTF-8. You will
probably need to deal with the other encodings only when you are handed data in those encodings
created by some other application.

7.6.1 ord() and chr()

Given a string representing one Unicode character, ord() returns an integer representing the Unicode
code point of that character. For example, ord(′a′) returns the integer 97. Conversely, chr(i) returns
the string representing a character whose Unicode code point is the integer i. For example, chr(97)
returns the string ′a′:

1 ord('a')
2 >>> 97

75

3 ord('7')
4 >>> 55

5 ord('%')
6 >>> 37

Conversely:

1 chr (97)

2 'a'
3 chr (55)

4 '7'
5 chr (37)

6 '%'

76

Chapter 8

Arrays

8.1 Lists as Arrays

A data structure is a way to organize data that we wish to process with a computer program. A
one-dimensional array (or array) is a data structure that stores a sequence of (references to) objects.
We refer to the objects within an array as its elements. The method that we use to refer to elements
in an array is numbering and then indexing them. If we have n elements in the sequence, we think
of them as being numbered from 0 to n - 1. Then, we can unambiguously specify one of them by
referring to the ith element for any integer i in this range.

Arrays consist of fixed-size data records that allow each element to be

efficiently located based on its findex.

A two-dimensional array is an array of (references to) one-dimensional arrays. Whereas the elements
of a one-dimensional array are indexed by a single integer, the elements of a two-dimensional array
are indexed by a pair of integers: the first specifying a row, and the second specifying a column.
In this chapter we will work with lists as arrays and refer to them as arrays thus setting the tone
for next chapter. We will use arrays to perform various computations. The chapter will also serve
as a review of most of the concepts learned so far and in fact the array descriptions are identical
to that of lists first introduced in chapter 4.1.

Initializing Python arrays. The simplest way to create an array in Python is to place comma-
separated literals between matching square brackets. For example, the code

1 SUITS = ['Clubs ', 'Diamonds ', 'Hearts ', 'Spades ']
2 x = [0.30 , 0.60, 0.10]

3 y = [0.50 , 0.10, 0.40]

creates an array SUITS[] with four strings, and creates arrays x[] and y[], each with three floats.

It is useful to think of references of the elements in an array as stored contiguously, one after the
other, in your computer’s memory, as shown in figure 8.1 for the SUITS[] array defined above.

Zero-based indexing. We always refer to the first element of an array a[] as a[0], the second
as a[1], and so forth. It might seem more natural to refer to the first element as a[1], the second

77

Figure 8.1: Array data structure

element as a[2], and so forth, but starting the indexing with 0 has some advantages and has emerged
as the convention used in most modern programming languages.

Array length. You can access the length of an array using Python’s built-in len() function: len(a)
is the number of elements in a[]. In Python, we can use the += operator to append elements to an
array. For example, if a[] is the array [1, 2, 3], then the statement a += [4] extends it to [1, 2, 3,
4]. More generally, we can make an array of n floats, with each element initialized to 0.0, with the
code:

1 a = []

2 for i in range(n):

3 a += [0.0]

Bounds checking. You must be careful when programming with arrays. It is your responsibility
to use legal indices when accessing an array element.

Mutability. An object is mutable if its value can change. Arrays are mutable objects because
we can change their elements. For example, if we create an array x = [.30, .60, .10], then the
assignment statement x[1] = .99 changes it to the array [.30, .99, .10]. The following code reverses
the order of the elements in an array a[]:

1 n = len(a)

2 for i in range(n // 2):

3 temp = a[i]

4 a[i] = a[n-1-i]

5 a[n-1-i] = temp

Of course, since a is a list, you could simply use a.reverse() which modifies the original array in-place
, i.e. no additional memory is required.

Iteration. The following code iterates over all elements of an array to compute the average of the
floats that it contains:

78

1 total = 0.0

2 for i in range(len(a)):

3 total += a[i]

4 average = total / len(a)

Python also supports iterating over the elements in an array without referring to the indices ex-
plicitly. To do so, put the array name after the in keyword in a for statement, as follows:

1 total = 0.0

2 for v in a:

3 total += v

4 average = total / len(a)

Writing an array. You can write an array by passing it as an argument to print(). Each object
in the array is converted to a string.

Aliasing. If x[] and y[] are arrays, the statement x = y causes x and y to reference the same array.
This result has an effect that is perhaps unexpected, at first, because it is natural to think of x and
y as references to two independent arrays. For example, after the assignment statements

1 x = [.30, .60, .10]

2 y = x

3 x[1] = .99

y[1] is also .99, even though the code does not refer directly to y[1]. This situation whereby two
variables refer to the same object is known as aliasing.

Copying and slicing. So how do we make a copy y[] of a given array x[]? One answer to this
question is to iterate through x[] to build y[], as in the following code:

1 y = []

2 for v in x:

3 y += [v]

Copying an array is such a useful operation that Python provides language support for a more
general operation known as slicing. So, the expression a[i:j] evaluates to a new array whose
elements are a[i], ..., a[j-1]. Moreover, the default value for i is 0 and the default value for j is
len(a), so y = x[:] is equivalent to the code given above.

Example: Dot Product. Given two vectors of the same length, their dot product is the sum of
the products of their corresponding components. If we represent the two vectors as one-dimensional
arrays x[] and y[] that are each of length n, their dot product is easy to compute:

1 dotp = 0.0

2 for i in range(n):

3 dotp += x[i]*y[i]

Example: Representing playing cards. Suppose that we want to compose a program that
processes playing cards. We might start with the following code:

79

1 SUITS = ['Clubs ', 'Diamonds ', 'Hearts ', 'Spades ']
2 RANKS = ['2', '3', '4', '5', '6', '7', '8', '9', '10',
3 'Jack ', 'Queen ', 'King ', 'Ace']

For example, we might use these two arrays to write a random card name, as follows:

1 rank = random.randrange(0, len(RANKS))

2 suit = random.randrange(0, len(SUITS))

3 print((RANKS[rank] + ' of ' + SUITS[suit]))

We might use the following code to initialize an array of length 52 that represents a deck of playing
cards, using the two arrays just defined:

1 deck = []

2 for rank in RANKS:

3 for suit in SUITS:

4 card = rank + ' of ' + suit

5 deck += [card]

6 print(deck)

Frequently, we wish to exchange two elements in an array. Continuing our example with playing
cards, the following code exchanges the cards at indices i and j:

1 temp = deck[i]

2 deck[i] = deck[j]

3 deck[j] = temp

Finally, the following code shuffles our deck of cards:

1 n = len(deck)

2 for i in range(n):

3 r = random.randrange(i, n)

4 temp = deck[r]

5 deck[r] = deck[i]

6 deck[i] = temp

7 print(deck)

8.2 2D Arrays

In many applications, a convenient way to store information is to use a table of numbers organized
in a rectangular table and refer to rows and columns in the table. The mathematical abstraction
corresponding to such tables is a matrix; the corresponding data structure is a two-dimensional
array.

80

M =

a11 a12 a13 ... a1n
a21 a22 a23 ... a2n
a31 a32 a33 ... a3n
.
.

am1 am2 am3 ... amn

Here, the numbers are arranged in rows and columns, where m and n represent the total number
of rows and columns respectively. So, an example of a square 2x2 matrix is

A =

[
1 5
−9 2

]
while a 3x4 matrix is

B =

 4 −3 11 −13
1 0 7 20
−12 2 5 6

Traditionally, we use the letter i to represent the row number and the letter j to represent the
column number. So, if i = 2 and j = 3 then B(i, j) = 7. In Python, however, we need to keep in
mind that we use zero-based indexing.

Initialization. The simplest way to create a two-dimensional array is to place comma-separated
one-dimensional arrays between matching square brackets. For example, this matrix of integers
having two rows and three columns

18 19 20

21 22 23

could be represented in Python using this array of arrays:

1 a = [[18, 19, 20], [21, 22, 23]]

Notice the following:

1 print(len(a)) # 2 : The array a is basically a "list" with two lists

2 print(len(a[0]) # 3 : The first row is a "list" has 3 elements

3 print(len(a[1]) # 3 : The second row has 3 elements

More generally, Python represents an m-by-n array as an array that contains m objects, each of
which is an array that contains n objects. For example, this Python code creates an m-by-n array
a[][] of floats, with all elements initialized to 0.0:

1 m=2

2 n=3

3 a = []

4 for i in range(m):

5 row = [0.0] * n

6 a += [row]

For convenience we can make this into a function that we can use later on:

81

1 def initMat(m, n):

2 mat = []

3 for i in range(m):

4 row = [0.0] * n

5 mat += [row]

6 return mat

Indexing. When a[][] is a two-dimensional array, the syntax a[i] denotes a reference to its ith row.
The syntax a[i][j] refers to the object at row i and column j. To access each of the elements in a
two-dimensional array, we use two nested for loops. For example, this code writes each object of
the 3-by-4 array B given above, one row per line.

1 B = [[4, -3, 11, -13], [1, 0, 7, 20], [-12, 2, 5, 6]]

2 for i in range(len(B)):

3 for j in range(len(B[0])):

4 print(B[i][j], end=' ')
5 print ()

6

7 # will print:

8 4 -3 11 -13

9 1 0 7 20

10 -12 2 5 6

Matrix operations. Typical applications in science and engineering involve representing matrices
as two-dimensional arrays and then implementing various mathematical operations with matrix
operands. For example, we can add two matrices a[][] and b[][] as follows:
par

Adding matrices.You can only add and subtract matrices of the same dimensions (size and
shape), which means that you can add or subtract only the corresponding elements. Here is an
example of how to add two 2x2 matrices:

1 def addMatrices(a,b):

2 '''adds two 2x2 matrices together '''
3 c = [[a[0][0]+b[0][0] ,a[0][1]+b[0][1]] ,

4 [a[1][0]+b[1][0] ,a[1][1]+b[1][1]]]

5 return c # note c is an array!

6

7 a = [[2,3],[5,-8]]

8 b = [[1,-4],[8,-6]]

9 c = addMatrices(a,b)

10 print(c)

11

12 [[3, -1], [13, -14]]

An even better way is to use loops and then we can generalize to add 2 nxn matrices:

1 def addMatrices(a,b):

2 '''adds two nxn matrices together '''

82

3 c = initMat(len(a), len(a[0])) # note this initialization

4 for i in range(len(a)): # loop over rows

5 for j in range(len(a[0])): # loop over columns

6 c[i][j] = a[i][j] + b[i][j]

7 return c

8

9 a = [[2,3],[5,-8]]

10 b = [[1,-4],[8,-6]]

11 print(addMatrices(a,b))

12

13 [[3, -1], [13, -14]]

Note the use if initMat().

Multiplying matrices. Similarly, we can multiply two matrices ~a~b keeping in mind that ~a~b is
defined if and only if the number of columns of ~a equals the number of rows of ~b. Thus, each
element c[i][j] in the product of a[][] and b[][] is computed by taking the dot product of row i of a[][]
with column j of b[][]. For example, a general formula to multiply two 2x2 matrices is:

[
a b
c d

] [
e f
g h

]
=

[
ae+ bg bf + bh
ce+ dg ch+ dh

]
(8.1)

This can be generalized to multiplication of (nxm)×(mxp). This may seem complicated but once
we have the matrices as input we can figure out the number of rows and columns and implement
an algorithm to carry out the multiplication.

We can implement matrix multiplication as follows:

1 def multMatrices(a ,b):

2 c = initMat(len(a), len(b[0])) # initialize 2D matrix

3 for i in range(len(a)): # iterate over 2 rows of a

4 for j in range(len(b[0])): # iterate over 2 columns of b

5 for k in range(len(b)): # iterate over rows/columns of b

/a

6 c[i][j] += a[i][k] * b[k][j] # dot product

7 return c

8

9 a = [[1, 2, 3], [4, 5, 6]] # 2x3 matrix

10 b = [[1, 2], [3, 4], [5, 6]] # 3x2 matrix

11 for r in multMatrices(a ,b):

12 print(r)

13

14 [22, 28]

15 [49, 64]

Although this is a straightforward implementation of matrix multiplication you should understand
how it works. This implementation is simple but inefficient, especially for large arrays like the ones
used in science and engineering. We will introduce more efficient ways to deal with numerical array
computations in the next chapter.

83

Order Matters in Matrix Multiplication. An important fact about multiplying matrices is
that AxB doesn’t necessarily equal BxA, i.e. matrix multiplication is non-commutative. Try it
with the example above.

Transforming Matrices. Multiplying matrices lets us transform them. For example, given a
vector v one can rotate v by multiplying it with a rotation matrix R and obtain a new, rotated,
vector v′:

v′ = Rv (8.2)

where R is the rotation matrix1 in 2D:

R =

[
cosθ −sinθ
sinθ cosθ

]
Note that for the given R the dimensions of v (and v′) must be 2x1. Now, if θ = 90o then R is
going to rotate v in the counterclockwise direction and R will be given by

R =

[
0 −1
1 0

]
For example, if we start with a unit vector lying on the x-axis and rotate it by 90o then we’ll end
up with a unit vector lying along the y-axis:[

0 1
]

=

[
0 −1
1 0

] [
1 0

]
And in Python this becomes:

1 R = [[0, -1],[1, 0]] # 90deg counter -clockwise Rotation matrix

2 v = [[1] ,[0]] # 2x1 vector , lying along x-axis

3 vp = multMatrices(R ,v) # rotate 90 degrees

4 print(vp)

5

6 [[0.0] , [1.0]] # rotated 2x1 vector , now lying along y-axis

Of course, we can also rotate another matrix, say A, but that is a bit more difficult to visualize
than with vectors.

Transposing matrices. An important concept in matrices is transposition, where the columns
become the rows, and vice versa. In our example, we want to change some matrix B into BT , the
notation for ”the B-matrix, transposed.”. So, if

B =

 4 −3 11 −13
1 0 7 20
−12 2 5 6

then

BT =

4 1 −12
−3 0 2
11 7 5
−13 20 6

1https://www.wikiwand.com/en/Rotation matrix

84

https://www.wikiwand.com/en/Rotation_matrix

We will be returning to all the matrix operations and concepts discussed in this chapter. However,
we will be using a powerful Python package called NumPy.

8.3 Other Arrays in Python

This section is optional.

8.3.1 Basic Typed Arrays

Python’s array module provides space-efficient storage of basic C-style data types like bytes, 32-bit
integers, floating point numbers, and so on. We will not be using them in this class but it is worth
mentioning them.

Arrays created with the array module are mutable and behave similarly to lists - except they are
”typed arrays” constrained to a single data type.

Because of this constraint array objects with many elements are more space-efficient than lists
(and tuples). The elements stored in them are tightly packed and this can be useful if you need to
store many elements of the same type.

Also, array arrays support many of the same methods as regular lists. For example, to append to
an array in Python you can just use the familiar array.append() method.

As a result of this similarity between Python lists and array objects, you might be able to use it
as a ”drop-in replacement” without requiring major changes to your application.

1 import array

2 arr = array.array('f', (1.0, 1.5, 2.0, 2.5))

3 arr[1]

4 1.5

5

6 # Arrays are "typed ":

7 arr[1] = 'hello '
8 TypeError: "must be real number , not str"

8.3.2 Immutable Arrays of Unicode Characters

Python 3.x uses str objects to store textual data as immutable sequences of Unicode characters.
Practically speaking that means a str is an immutable array of characters. Oddly enough it’s also
a recursive data structure - each character in a string is a str object of length 1 itself.

String objects are space-efficient because they are tightly packed and specialize in a single data
type. If you are storing Unicode text you should use them. Because strings are immutable in
Python modifying a string requires creating a modified copy. The closest equivalent to a ”mutable
string” is storing individual characters inside a list.

1 arr = 'abcd '
2 arr[1]

3 'b'
4

85

5 arr

6 'abcd '
7

8 # Strings are immutable:

9 arr[1] = 'e'
10 TypeError: "'str' object does not support item assignment"

11

12 # Strings are recursive data structures:

13 type('abc')
14 "<class 'str '>"
15 type('abc'[0])
16 "<class 'str '>"

8.3.3 Immutable Arrays of Single Bytes

Bytes objects are immutable sequences of single bytes (integers in the range of 0 ≤ x ≤ 255).
Conceptually they are similar to str objects and you can also think of them as immutable arrays
of bytes.

Like strings, bytes have their own literal syntax for creating objects and they are space-efficient.
Bytes objects are immutable, but unlike strings there is a dedicated ”mutable byte array” data
type called bytearray that they can be unpacked into.

1 arr = bytes((0, 1, 2, 3))

2 arr[1]

3 1

4

5 # Bytes literals have their own syntax:

6 arr

7 b'\x00\x01\x02\x03'
8

9 # Only valid "bytes" are allowed:

10 bytes((0, 300))

11 ValueError: "bytes must be in range(0, 256)"

12

13 # Bytes are immutable:

14 arr[1] = 23

15 TypeError: "'bytes ' object does not support item assignment"

8.3.4 Mutable Arrays of Single Bytes

The bytearray type is a mutable sequence of integers in the range 0 ≤ x ≤ 255. They are closely
related to bytes objects with the main difference being that bytearrays can be modified freely -
you can overwrite elements, remove existing elements, or add new ones. The bytearray object
will grow and shrink appropriately.

1 arr = bytearray ((0, 1, 2, 3))

2 arr[1]

86

3 1

4

5 # Bytearrays are mutable:

6 arr[1] = 23

7 arr

8 bytearray(b'\x00\x17\x02\x03')
9

10 arr[1]

11 23

There are a number of built-in data structures you can choose from when it comes to implementing
arrays in Python. For simple applications, that may be all that you need. However, for scientific
computing the most popular choice is use the NumPy module which we will cover next.

87

Chapter 9

Numpy

An array is an indexed sequence of objects, all of which are of the same type. Earlier, we imple-
mented arrays using the Python list data type: a list object is an indexed sequence of objects, not
necessarily of the same type. Using Python lists to implement arrays incurs substantial overhead,
both in terms of memory (because Python must associate type information with each element) and
time (because Python must perform a type check when accessing an element). Moreover, it is the
programmer’s responsibility to enforce the ”all elements of the same type” constraint.

Now, we describe an alternative way to represent arrays in Python using the ndarray (”n-dimensional
array”) data type in the standard NumPy library: a ndarray object is an indexed sequence of ob-
jects, all of which are of the the same type - and NumPy enforces the ”all elements of the same
type” constraint. We use the informal term NumPy array to mean ”an object of type ndarray.”

Typically the elements of a NumPy array are numbers, such as floats or integers. As a result, there
is minimal overhead in terms of memory (because NumPy need only associate type information
with the array and not each element). Also, this representation can dramatically speed up certain
types of ”vectorized” computations because the array elements are stored contiguously in memory.

But there is more to NumPy than numeric arrays: the NumPy library also supports arrays whose
elements are booleans and strings, and arrays whose elements are of data types that you define.
There also is more to NumPy than arrays: the NumPy library provides many functions that work
on ”scalar” numeric objects. But the most valuable aspect of NumPy is its ability to manipulate
numeric arrays; this chapter describes only that aspect.

9.1 When to Use Numpy

When should you use NumPy? One short answer is ”when you need the functionality that NumPy
provides.” Indeed, as described later, NumPy provides a rich set of numeric array-handling functions
and methods. Generally you should use the pre-defined (and thoroughly tested) functions and
methods provided by NumPy instead of defining your own equivalent functions or methods.

Another short answer is ”when you need your program to run faster.” The NumPy library was
not written in Python; instead it was written using the C programming language. Programs
written in C run more quickly than those written in Python. So a Python program that imple-
ments arrays as NumPy arrays (maybe) will run faster than an equivalent Python program that
implements arrays as ordinary Python lists.

88

However, there is more to the story. Since NumPy was written in C, there is a boundary between
NumPy code and ordinary Python code. Crossing that boundary is expensive. That is, calling
a NumPy function or method from ordinary Python code consumes more time than does calling
an ordinary Python function or method. Similarly, returning a value from a NumPy function or
method to ordinary Python code consumes more time than does returning a value from an ordinary
Python function or method. With that in mind, suppose:

• Program A calls NumPy functions/methods many times, and each function/method call
involves little computation.

• Program B calls NumPy functions/methods few times, and each function/method call involves
much computation.

In that case Program B probably will benefit from the use of NumPy, but Program A probably
will not.

9.2 Numpy Data Types

Since the NumPy library was written in the C programming language, its fundamental data types
are, for the most part, those of C. Table 9.1 (taken from the online NumPy documentation) lists
the NumPy fundamental data types: When you create a NumPy array, you specify the type of the
array’s elements. Normally you specify the element data type as a Python data type: int, float,
bool, or complex. The Python int data type maps to the NumPy int data type. So if you create
a NumPy array with elements of data type int, then internally within NumPy its elements are of
type int . Similarly, the Python float data type maps to the NumPy float data type, the Python
bool data type maps to the NumPy bool data type, and the Python complex data type maps to
the NumPy complex data type.

Usually you need not be concerned about the distinction between Python data types and NumPy
data types. When an object of a Python data type is sent ”across the boundary” to NumPy,
the object automatically is converted to the appropriate Numpy data type. Conversely, when
NumPy sends an object of a NumPy data type back to Python, and when that object is used in
a context that demands an object of a Python data type, the object automatically is converted to
the appropriate Python data type.We will henceforth ignore the distinction between Python and
NumPy data types.

However the distinction between Python and NumPy data types can be important in programs that
manipulate large-magnitude integers, that is, integers whose absolute values are large. Whereas
Python int objects have unlimited range, the range of NumPy int objects is limited. A NumPy
int object has range -2147483648 to 2147483647 (that is -231 to 231 − 1) on systems that store
integers using 32 binary digits, and -9223372036854775808 to 9223372036854775807 (that is, -263

to 263 − 1) on systems that store integers using 64 binary digits.

So in NumPy it is possible for an expression to evaluate to an integer that is outside of the range
that NumPy can store. When such an overflow occurs, NumPy evaluates the expression to an
integer that is mathematically incorrect. Beware when manipulating large-magnitude integers in
NumPy.

89

Table 9.1: NumPy Data Types

Data Type Description

bool boolean (True or False) stored using 8 bits
int Default integer type (same as C long; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)
intp Integer used for indexing (same as C ssize t; normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (-9223372036854775808 to 9223372036854775807)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to 18446744073709551615)
float Shorthand for float64
float Shorthand for float64
float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex Shorthand for complex128
complex64 Complex number, represented by two 32-bit floats (real and imaginary components)
complex128 Complex number, represented by two 64-bit floats (real and imaginary components)

9.3 NumPy Array Fundamentals

There are several ways to import NumPy. The standard approach is to use a simple import
statement:

1 import numpy

However, for large amounts of calls to NumPy functions, it can become tedious to write numpy.X
over and over again. Instead, it is common to import under the briefer name np:

1 import numpy as np

This statement will allow us to access NumPy objects using np.X instead of numpy.X. It is also
possible to import NumPy directly into the current namespace so that we don’t have to use dot
notation at all, but rather simply call the functions as if they were built-in:

1 from numpy import *

Never do this. If you do you will remove some of the nice organization that modules provide as
well as pontentially create namespace collisions. In this class we will assume that import numpy
as np has been used.

How do we create Numpy arrays? An array can be created from a list:

90

1 import numpy as np

2 a = np.array ([18, 19, 20, 21], int)

creates a one-dimensional NumPy array containing integers 18, 19, 20, and 21, and this statement:

1 b = np.array ([[18.5 , 19.3] , [20.1 , 21.0] , [23.7 , 24.9]] , float)

creates a two dimensional NumPy array of floats having three rows and two columns. If you omit
the second argument to np.array(), then the function infers the desired element type by examining
the types of the values provided in the first argument.

To convert a NumPy array to a Python list, call the tolist() method. For example the expression
a.tolist() evaluates to [18, 19, 20, 21], and b.tolist() evaluates to [[18.5, 19.3], [20.1, 21.0], [23.7,
24.9]].

You can reference an element of a one-dimensional NumPy array, just as you can reference an
elements of a Python list, by specifying an index enclosed within square brackets. For example a[1]
evaluates to 19. To reference an element of a two-dimensional NumPy array, specify the indices
within square brackets, separated by commas. For example b[1, 0] evaluates to 20.1. Note that
the syntax for referencing an element of a NumPy two-dimensional array differs from the syntax
for referencing an element of a list of lists. (Recall that you would use the expression b[1][0] if b
referenced a Python list of lists.)

Iteration over NumPy arrays works as expected:

1 for element in a:

2 print(element)

3

4 for row in b:

5 for element in row:

6 print(element)

Slicing a NumPy array also is straightforward. For example a[1:2] evaluates to the NumPy array
[19, 20]. However, slicing a numpy array does not generate a copy of the array. For example, this
statement:

1 e = a[1:2]

causes e to reference a subarray of the array referenced by a that is not distinct from a. Assigning
some value to e[0] would change both e[0] and a[1]. Accordingly, the expression a[:] does not create
a copy of the NumPy array referenced by a. Instead, to make a copy of a NumPy array you must
call the copy() method:

1 e = a.copy()

Arrays can be multidimensional. Unlike lists, different axes are accessed using commas inside
bracket notation. Here is an example with a two-dimensional array (e.g., a matrix):

1 a = np.array ([[1, 2, 3], [4, 5, 6]], float)

2 print(a)

3 array ([[1. , 2., 3.],

4 [4., 5., 6.]])

91

Array slicing works with multiple dimensions in the same way as usual, applying each slice speci-
fication as a filter to a specified dimension. Use of a single ”:” in a dimension indicates the use of
everything along that dimension:

1 a = np.array ([[1, 2, 3], [4, 5, 6]], float)

2 a[1,:]

3 array([4., 5., 6.])

4

5 a[:,2]

6 array([3., 6.])

7

8 a[-1:,-2:]

9 array ([[5., 6.]])

Array Properties The shape property of an array returns a tuple with the size of each array
dimension:

1 a.shap (2,3)

The dtype property tells you what type of values are stored by the array:

1 a.dtype

2 dtype('float64 ')

When used with an array, the len function returns the length of the first axis:

1 len(a)

2 2

The in statement can be used to test if values are present in an array:

1 2 in a

2 True

3 0 in a

4 False

Arrays can be reshaped using tuples that specify new dimensions. In the following example, we turn
a ten-element one-dimensional array into a two-dimensional one whose first axis has five elements
and whose second axis has two elements:

1 a = np.array(range (10), float)

2 a

3 array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

4 a = a.reshape ((5, 2))

5 a

6 array ([[0., 1.],

7 [2., 3.],

8 [4., 5.],

9 [6., 7.],

10 [8., 9.]])

11 a.shape

12 (5, 2)

92

Notice that the reshape function creates a new array and does not itself modify the original array.

Transposed versions of arrays can also be generated, which will create a new array with the final
two axes switched:

1 a = np.array(range (6), float).reshape ((2, 3))

2 a

3 array ([[0., 1., 2.],

4 [3., 4., 5.]])

5 a.transpose ()

6 array ([[0., 3.],

7 [1., 4.],

8 [2., 5.]])

One-dimensional versions of multi-dimensional arrays can be generated with flatten:

1 a = np.array ([[1, 2, 3], [4, 5, 6]], float)

2 a

3 array ([[1., 2., 3.],

4 [4., 5., 6.]])

5 a.flatten ()

6 array([1., 2., 3., 4., 5., 6.])

Finally, the dimensionality of an array can be increased using the newaxis constant in bracket
notation:

1 a = np.array([1, 2, 3], float)

2 a

3 array ([1., 2., 3.])

4 a[:,np.newaxis] # Note that this is now a column vector

5 array ([[1.],

6 [2.],

7 [3.]])

8 a[:,np.newaxis]. shape

9 (3,1)

10 b[np.newaxis ,:]

11 array ([[1., 2., 3.]])

12 b[np.newaxis ,:]. shape

13 (1,3)

Notice here that in each case the new array has two dimensions; the one created by newaxis has a
length of one. The newaxis approach is convenient for generating the proper dimensioned arrays
for vector and matrix mathematics.

9.3.1 Other ways to create arrays

The arange function is similar to the range function but returns an array:

1 np.arange(5, dtype=float)

2 array([0., 1., 2., 3., 4.])

3 np.arange(1, 6, 2, dtype=int)

93

4 array([1, 3, 5])

The functions zeros and ones create new arrays of specified dimensions filled with these values.
These are perhaps the most commonly used functions to create new arrays:

1 np.ones ((2 ,3), dtype=float)

2 array ([[1., 1., 1.],

3 [1., 1., 1.]])

4 np.zeros(7, dtype=int)

5 array([0, 0, 0, 0, 0, 0, 0])

There are also a number of functions for creating special matrices (2D arrays). To create an identity
matrix of a given size,

1 np.identity(4, dtype=float)

2 array ([[1., 0., 0., 0.],

3 [0., 1., 0., 0.],

4 [0., 0., 1., 0.],

5 [0., 0., 0., 1.]])

The eye function returns matrices with ones along the kth diagonal:

1 np.eye(4, k=1, dtype=float)

2 array ([[0., 1., 0., 0.],

3 [0., 0., 1., 0.],

4 [0., 0., 0., 1.],

5 [0., 0., 0., 0.]])

9.4 NumPy Array Operations

9.4.1 Basic operations

Many functions exist for extracting whole-array properties. The items in an array can be summed
or multiplied:

1 >>> a = np.array([2, 4, 3], float)

2 >>> a.sum()

3 9.0

4 >>> a.prod()

5 24.0

In this example, member functions of the arrays were used. Alternatively, standalone functions in
the NumPy module can be accessed:

1 >>> np.sum(a)

2 9.0

3 >>> np.prod(a)

4 24.0

94

For most of the routines described below, both standalone and member functions are available. A
number of routines enable computation of statistical quantities in array datasets, such as the mean
(average), variance, and standard deviation:

1 >>> a = np.array([2, 1, 9], float)

2 >>> a.mean()

3 4.0

4 >>> a.var()

5 12.666666666666666

6 >>> a.std()

7 3.5590260840104371

It’s also possible to find the minimum and maximum element values:

1 >>> a = np.array([2, 1, 9], float)

2 >>> a.min()

3 1.0

4 >>> a.max()

5 9.0

The argmin and argmax functions return the array indices of the minimum and maximum values:

1 >>> a = np.array([2, 1, 9], float)

2 >>> a.argmin ()

3 1

4 >>> a.argmax ()

5 2

For multidimensional arrays, each of the functions thus far described can take an optional argument
axis that will perform an operation along only the specified axis, placing the results in a return
array:

1 >>> a = np.array ([[0, 2], [3, -1], [3, 5]], float)

2 >>> a.mean(axis =0)

3 array([2., 2.])

4 >>> a.mean(axis =1)

5 array([1., 1., 4.])

6 >>> a.min(axis =1)

7 array([0., -1., 3.])

8 >>> a.max(axis =0)

9 array([3., 5.])

Like lists, arrays can be sorted:

1 >>> a = np.array([6, 2, 5, -1, 0], float)

2 >>> sorted(a)

3 [-1.0, 0.0, 2.0, 5.0, 6.0]

4 >>> a.sort()

5 >>> a

6 array([-1., 0., 2., 5., 6.])

95

For multidimensional arrays, each of the functions thus far described can take an optional argument
axis that will perform an operation along only the specified axis, placing the results in a return
array:

1 >>> a = np.array ([[0, 2], [3, -1], [3, 5]], float)

2 >>> a.mean(axis =0)

3 array([2., 2.])

4 >>> a.mean(axis =1)

5 array([1., 1., 4.])

6 >>> a.min(axis =1)

7 array([0., -1., 3.])

8 >>> a.max(axis =0)

9 array([3., 5.])

10 Like lists , arrays can be sorted:

11 >>> a = np.array([6, 2, 5, -1, 0], float)

12 >>> sorted(a)

13 [-1.0, 0.0, 2.0, 5.0, 6.0]

14 >>> a.sort()

15 >>> a

16 array([-1., 0., 2., 5., 6.])

9.4.2 Comparison operators and value testing

Boolean comparisons can be used to compare members elementwise on arrays of equal size. The
return value is an array of Boolean True / False values:

1 >>> a = np.array([1, 3, 0], float)

2 >>> b = np.array([0, 3, 2], float)

3 >>> a > b

4 array([True , False , False], dtype=bool)

The results of a Boolean comparison can be stored in an array:

1 >>> c = a > b

2 >>> c

3 array([True , False , False], dtype=bool)

The any and all operators can be used to determine whether or not any or all elements of a Boolean
array are true:

1 >>> c = np.array([True , False , False], bool)

2 >>> any(c)

3 True

4 >>> all(c)

5 False

9.4.3 Array item selection and manipulation

We have already seen that, like lists, individual elements and slices of arrays can be selected using
bracket notation. Unlike lists, however, arrays also permit selection using other arrays. That is,

96

we can use array selectors to filter for specific subsets of elements of other arrays. Boolean arrays
can be used as array selectors:

1 >>> a = np.array ([[6, 4], [5, 9]], float)

2 >>> a >= 6

3 array ([[True , False],

4 [False , True]], dtype=bool)

5 >>> a[a >= 6]

6 array([6., 9.])

Notice that sending the Boolean array given by a¿=6 to the bracket selection for a, an array with
only the True elements is returned. We could have also stored the selector array in a variable:

1 >>> a = np.array ([[6, 4], [5, 9]], float)

2 >>> sel = (a >= 6)

3 >>> a[sel]

4 array([6., 9.])

In addition to Boolean selection, it is possible to select using integer arrays. Here, the integer
arrays contain the indices of the elements to be taken from an array. Consider the following one-
dimensional example:

1 >>> a = np.array([2, 4, 6, 8], float)

2 >>> b = np.array([0, 0, 1, 3, 2, 1], int)

3 >>> a[b]

4 array([2., 2., 4., 8., 6., 4.])

9.4.4 Vector and matrix mathematics

NumPy provides many functions for performing standard vector and matrix multiplication routines.
To perform a dot product,

1 >>> a = np.array([1, 2, 3], float)

2 >>> b = np.array([0, 1, 1], float)

3 >>> np.dot(a, b)

4 5.0

The dot function also generalizes to matrix multiplication:

1 >>> a = np.array ([[0, 1], [2, 3]], float)

2 >>> b = np.array([2, 3], float)

3 >>> c = np.array ([[1, 1], [4, 0]], float)

4 >>> a

5 array ([[0., 1.],

6 [2., 3.]])

7 >>> np.dot(b, a)

8 array([6., 11.])

9 >>> np.dot(a, b)

10 array([3., 13.])

11 >>> np.dot(a, c)

97

12 array ([[4., 0.],

13 [14., 2.]])

14 >>> np.dot(c, a)

15 array ([[2., 4.],

16 [0., 4.]])

It is also possible to generate inner, outer, and cross products of matrices and vectors. For vectors,
note that the inner product is equivalent to the dot product:

1 >>> a = np.array([1, 4, 0], float)

2 >>> b = np.array([2, 2, 1], float)

3 >>> np.outer(a, b)

4 array ([[2., 2., 1.],

5 [8., 8., 4.],

6 [0., 0., 0.]])

7 >>> np.inner(a, b)

8 10.0

9 >>> np.cross(a, b)

10 array([4., -1., -6.])

NumPy also comes with a number of built-in routines for linear algebra calculations. These can
be found in the sub-module linalg. Among these are routines for dealing with matrices and their
inverses. The determinant of a matrix can be found:

1 >>> a = np.array ([[4, 2, 0], [9, 3, 7], [1, 2, 1]], float)

2 >>> a

3 array ([[4., 2., 0.],

4 [9., 3., 7.],

5 [1., 2., 1.]])

6 >>> np.linalg.det(a)

7 -53.999999999999993

The inverse of a matrix can be found:

1 >>> b = np.linalg.inv(a)

2 >>> b

3 array ([[0.14814815 , 0.07407407 , -0.25925926] ,

4 [0.2037037 , -0.14814815 , 0.51851852] ,

5 [-0.27777778 , 0.11111111 , 0.11111111]])

6 >>> np.dot(a, b)

7 array ([[1.00000000e+00, 5.55111512e-17, 2.22044605e-16],

8 [0.00000000e+00, 1.00000000e+00, 5.55111512e-16],

9 [1.11022302e-16, 0.00000000e+00, 1.00000000e+00]])

There are many other linear algebra operations which are beyond the scope of this class.

9.4.5 Statistics

In addition to the mean, var, and std functions, NumPy supplies several other methods for returning
statistical features of arrays. The median can be found:

98

1 >>> a = np.array([1, 4, 3, 8, 9, 2, 3], float)

2 >>> np.median(a)

3 3.0

The correlation coefficient for multiple variables observed at multiple instances can be found for
arrays of the form [[x1, x2, ...], [y1, y2, ...], [z1, z2, ...], ...] where x, y, z are different observables
and the numbers indicate the observation times:

1 >>> a = np.array ([[1, 2, 1, 3], [5, 3, 1, 8]], float)

2 >>> c = np.corrcoef(a)

3 >>> c

4 array ([[1. , 0.72870505] ,

5 [0.72870505 , 1.]])

Here the return array c[i,j] gives the correlation coefficient for the ith and jth observables. Similarly,
the covariance for data can be found:

1 >>> np.cov(a)

2 array ([[0.91666667 , 2.08333333] ,

3 [2.08333333 , 8.91666667]])

9.4.6 Random Numbers

An important part of any simulation is the ability to draw random numbers. For this purpose, we
use NumPy’s built-in pseudorandom number generator routines in the sub-module random. The
numbers are pseudo random in the sense that they are generated deterministically from a seed
number, but are distributed in what has statistical similarities to random fashion1.

The random number seed can be set:

1 np.random.seed (293423)

The seed is an integer value. Any program that starts with the same seed will generate exactly the
same sequence of random numbers each time it is run. This can be useful for debugging purposes,
but one does not need to specify the seed and in fact, when we perform multiple runs of the same
simulation to be averaged together, we want each such trial to have a different sequence of random
numbers. If this command is not run, NumPy automatically selects a random seed (based on the
time) that is different every time a program is run. An array of random numbers in the half-open
interval [0.0, 1.0) can be generated:

1 >>> np.random.rand (5)

2 array([0.40783762 , 0.7550402 , 0.00919317 , 0.01713451 , 0.95299583])

The rand function can be used to generate two-dimensional random arrays, or the resize function
could be employed here:

1 >>> np.random.rand (2,3)

2 array ([[0.50431753 , 0.48272463 , 0.45811345] ,

3 [0.18209476 , 0.48631022 , 0.49590404]])

4 >>> np.random.rand (6).reshape ((2 ,3))

1NumPy uses a particular algorithm called the Mersenne Twister to generate pseudorandom numbers

99

5 array ([[0.72915152 , 0.59423848 , 0.25644881] ,

6 [0.75965311 , 0.52151819 , 0.60084796]])

To generate a single random number in [0.0, 1.0),

1 >>> np.random.random ()

2 0.70110427435769551

To generate random integers in the range [min, max) use randint(min, max):

1 >>> np.random.randint(5, 10)

2 9

In each of these examples, we drew random numbers form a uniform distribution. NumPy also
includes generators for many other distributions, some of which may be introduced later.

9.4.7 Note about operations

In many cases the same array operation can be performed using an operator, a method call, or a
function call. For example, both of these expressions compute the memberwise sum of two arrays:

1 a + b # Using an operator

2 numpy.add(a, b) # Using a function call

and both of these expressions compute the dot product of two arrays:

1 a.dot(b) # Using a method call

2 numpy.dot(a, b) # Using a function call

Generally we use an operator if it is available, we use a method call only if an operator is unavailable,
and we use a function call only if neither an operator nor a method call is available.

9.5 Numpy and Text IO

Numpy provides two functions to read in text data: savetxt and loadtxt. In the following simple
example, we define an array x and save it as a textfile with savetxt:

1 import numpy as np

2 x = np.array ([[1, 2, 3],

3 [4, 5, 6],

4 [7, 8, 9]], np.int32)

5 np.savetxt("digits.dat", x)

The file ”digits.dat” is a text file and its content looks like this:

1.000000000000000000e+00 2.000000000000000000e+00 3.000000000000000000e+00

4.000000000000000000e+00 5.000000000000000000e+00 6.000000000000000000e+00

7.000000000000000000e+00 8.000000000000000000e+00 9.000000000000000000e+00

100

It is also possible to print the array in a special format, like for example with three decimal places
or as integers. For this purpose we assign a format string to the third parameter ’fmt’. We saw in
our first example that the default delimiter is a blank. We can change this behavior by assigning
a string to the parameter ”delimiter”.

1 np.savetxt("digits2.dat", x, fmt="%2.3f", delimiter=",")

The file ”digits2.dat” becomes:

1.000,2.000,3.000

4.000,5.000,6.000

7.000,8.000,9.000

We will read in now the file ”digits.dat” using loadtxt:

1 y = np.loadtxt("digits.dat")

2 print(y)

3 [[1. 2. 3.]

4 [4. 5. 6.]

5 [7. 8. 9.]]

To read ”digits2.dat”:

1 y = np.loadtxt("digits2.dat", delimiter=",")

2 print(y)

3 [[1. 2. 3.]

4 [4. 5. 6.]

5 [7. 8. 9.]]

6

7 print(type(y))

8 <class 'numpy.ndarray '>

Using the Numpy loadtxt reads data into numpy arrays which allows us to use the full Numpy
functionality on the data.

101

Chapter 10

Basic Plotting

10.1 Matplotlib: Pylab

The standard package for curve plotting in Python is Matplotlib. First we exemplify Matplotlib
using matplotlib.pylab, which enables a syntax very close to that of Matlab.

As a first example let us plot the curve y = t2e−t
2

for t values between 0 and 3. First we generate
equally spaced coordinates for t, say 51 values (50 intervals). Then we compute the corresponding
y values at these points, before we call the plot(t,y) command to make the curve plot.

1 from matplotlib.pylab import *

2 def f(t):

3 return t**2* exp(-t**2)

4 t = linspace(0, 3, 51)

5 y = zeros(len(t))

6 for i in arange(len(t)):

7 y[i] = f(t[i])

8 # or simply y = f(t), which yields faster and shorter code

9 plot(t, y)

10 show()

The from ”matplotlib.pylab import *” command performs two commands in the background:
”from numpy import *” and import of all Matplotlib commands. We have already mentioned
that this is bad practice. However, doing so creates a namespace that resembles Matlab-style
syntax.

One can generate an image plot in PNG or other image formats. The savefig function saves the
plot to files in various image formats:

1 savefig('exp_plot.png') # produce PNG

The x and y axes in curve plots should have labels, here t and y, respectively. Also, the curve should
be identified with a label, or legend as it is often called. A title above the plot is also common.
In addition, we may want to control the extent of the axes (although most plotting programs will
automatically adjust the axes to the range of the data). All such things are easily added after the
plot command:

102

1 xlabel('t')
2 ylabel('y')
3 legend (['t^2*exp(-t^2)'])
4 axis([0, 3, -0.05, 0.6]) # [tmin , tmax , ymin , ymax]

5 title('A simple plot ')
6 show()

The generated image file is shown in figure 10.1.

A common plotting task is to compare two or more curves, which requires multiple curves to be
drawn in the same plot. Suppose we want to plot the two functions f1(t) = t2e−t

2
andf2(t) = t4e−t

2
.

We can then just issue two plot commands, one for each function:

1 def f1(t):

2 return t**2* exp(-t**2)

3 def f2(t):

4 return t**2*f1(t)

5 t = linspace(0, 3, 51)

6 y1 = f1(t)

7 y2 = f2(t)

8

9 plot(t, y1 , 'r-')
10 plot(t, y2 , 'bo')
11 xlabel('t')
12 ylabel('y')
13 legend (['t^2*exp(-t^2)?, ?t^4*exp(-t^2)'])
14 title('Plotting two curves in the same plot ')
15 show()

103

In these plot commands, we have also specified the line type: r- means red (r) line (-), while bo
means a blue (b) circle (o) at each data point.The legends for each curve is specified in a list where
the sequence of strings correspond to the sequence of plot commands. The generated image file
is shown in figure 10.1. We may also put plots together in a figure with r rows and c columns of

plots. The subplot(r,c,a) does this, where a is a row-wise counter for the individual plots.

1 subplot(2, 1, 1)

2 plot(t, y1 , 'r-', t, y2 , 'bo')
3 xlabel('t')
4 ylabel('y')
5 axis([t[0], t[-1], min(y2) -0.05, max(y2)+0.5])

6 legend (['t^2*exp(-t^2)', 't^4*exp(-t^2)'])
7 title('Top figure ')
8

9 subplot(2, 1, 2)

10 t3 = t[::4]

11 y3 = f2(t3)

12 plot(t, y1 , 'b-', t3 , y3 , 'ys')
13 xlabel('t')
14 ylabel('y')
15 axis([0, 4, -0.2, 0.6])

16 legend (['t^2*exp(-t^2)', 't^4*exp(-t^2)'])
17 title('Bottom figure ')
18 show()

104

10.2 Matplotlib: Pyplot

In this class we do not promote the matplotlib.pylab interface described in the previous section.
However, you may use it for simple plots and quick prototyping. Instead, we recommend using the
matplotlib.pyplot module. The standard practice is to prefix Numerical Python and Matplotlib
functionality by short forms of their package names:

1 import numpy as np

2 import matplotlib.pyplot as plt

The commands in matplotlib.pyplot are similar to those in matplotlib.pylab. Most can typi-
cally be obtained by prefixing the pylab commands with plt:

1 plt.xlabel('t')
2 plt.ylabel('y')
3 plt.legend (['t^2*exp(-t^2)'])
4 plt.axis([0, 3, -0.05, 0.6]) # [tmin , tmax , ymin , ymax]

5 plt.title('A simple plot ')
6 plt.show()

Once you have created a basic plot, there are numerous possibilities for fine-tuning the figure, i.e.,
adjusting tick marks on the axis, inserting text, etc. The Matplotlib website1 is full of instructive
examples on what you can do with this excellent package2.

1https://matplotlib.org/
2There are several other alternatives for specialized plotting. However, we will ony use Matplotlib in this class.

105

https://matplotlib.org/

Chapter 11

Object Oriented Programming

Python is an object-oriented language. It supports all the usual functionality of such languages
such as classes, inheritance, and polymorphism. Object-oriented programming basically deals with
creating modular, reusable bits of code, which are called objects. We have already been dealing
with objects such as string objects and list objects1. You are free to use Python without using
any of its object oriented functionality by just sticking with functions and groups of statements
as we have been doing throughout these notes. However, if you would like to create larger scale
applications and systems, it may be more advantageous to use the object oriented programming
paradigm.

11.1 Classes

A class packs a set of data (variables) together with a set of functions operating on the data.
The goal is to achieve more modular code by grouping data and functions into manageable (often
small) units. Most of the mathematical computations in this class can easily be coded without
using classes, but in many problems, classes enable either more elegant solutions or code that is
easier to extend at a later stage. In the non-mathematical world, where there are no mathematical
concepts and associated algorithms to help structure the problem solving, software development can
be very challenging. Classes may then improve the understanding of the problem and contribute to
simplify the modeling of data and actions in programs. As a consequence, almost all large software
systems being developed in the world today are heavily based on classes.

11.1.1 Defining a class

The syntax of defining class is as follows:

1 class class_name(parent_class_name):

2 <method_1_definition >

3 ...

4 <method_n_definition >

The class definition is divided into two parts: class header and class body.

1In fact, everything in Python is an object.

106

The class header starts with class keyword followed by the name of the class, followed by the
optional parent class name inside parentheses. The class name and parent class name can be any
valid identifier.

The parent class name class refers to the class you want to inherit from. This is known as inheri-
tance. If you don’t specify parent class name while defining a class it will be automatically set to
object. We will discuss inheritance and object in more detail in the next sections.

In the next line, we have a class body, this is where we define methods to operate on data. Method
definitions must be equally indented otherwise you will get a syntax error.

In the following example, we are defining a class to represent a Circle. The Circle class defines an
attribute named radius and three methods namely init (), get area() and get perimeter() (see
Circle.py).

1 import math

2

3 class Circle:

4

5 def __init__(self , radius):

6 self.radius = radius

7

8 def get_area(self):

9 return math.pi * self.radius ** 2

10

11 def get_perimeter(self):

12 return 2 * math.pi * self.radius

Let’s step through the code line by line:

In line 1, we are importing math module because we will be using its pi constant in our methods.

In line 3, we have a class header, which starts with class keyword followed by the class name, which
in this case is Circle, followed by a colon (:).

In the next line we have the class body, where we have defined the following three methods:

1. init () method.

2. get area() method.

3. get perimeter() method.

The syntax of defining methods is exactly the same as that of functions.

Notice that each method has a first parameter named self. In Python, the self parameter is required
for every method. The self parameter refers to the object that invokes that method. Python uses
self parameter to know which object to operate on inside the class. While calling the method you
don’t need to pass any value to self parameter, Python interpreter automatically binds the self
parameter to the object when a method is called.

In lines 5-6, we have defined a method named init . The init () is a special method known
as initializer or constructor. It is invoked everytime after a new object is created in memory.
The purpose of the initializer method is to create the object’s attribute with some initial value.

107

Apart from the self parameter, init () expects a radius parameter to provide an initial value
to the radius attribute of the Circle object. The object’s attribute is also commonly known as an
instance variable. The methods that operate on instance variables are known as instance methods.
Our Circle class has two instance methods get perimeter() and get area(). Each individual object
has its own set of instance variables. These variables stores object’s data. The scope of an instance
variable and keyword self is limited to the body of the class. Inside a class, we use self to access
object’s attributes and methods. For example, we can use self.var to access instance variable named
var and self.foo() to invoke the foo() instance method of an object.

Defining the constructor method (i.e init ()) is not a requirement, If you don’t define it then
Python automatically supplies an empty init () method which does nothing.

In line 6, the instance variable self.radius is initialized to the value of the radius variable. That line
of code creates an attribute named radius with an initial value for the object that was just created.

Unlike instance variable radius (on the left side), the radius variable on the right hand side of the
assignment operator is a local variable and its scope is only limited to the init () method.

In lines 8 to 9, we have defined get area() instance method which calculates and returns area of
the circle.

In lines 11 to 12, we have defined get perimeter() instance method which calculates and returns
perimeter of the circle.

Notice that inside get area() and get perimeter() we are accessing instance variable radius using
self.radius instead of just radius.

Now that we know how Circle class is defined, let’s create some objects of the Circle class.

11.1.2 Creating objects

We can create objects from a class by calling class name as if it was a function:

1 ClassName ()

However, if you have defined init () method then you would need to call class name with argu-
ments as follows:

1 ClassName(arguments)

The arguments must match the parameters in the init () method without self. Otherwise, you
will get an error.

Here is an example:

1 my_circle = Circle (5)

The above statement does the following things:

1. Creates an object of Circle class.

2. Invokes the init () method, passes this newly created Circle object to self, and the other
argument (i.e 5) to the radius variable.

3. Creates an attribute named radius with an initial value for the object referenced by self.
returns the Circle object

108

4. assigns the reference of the Circle object to the variable my circle.

Note that my circle only contains a reference (address) to the object, not the actual object.

11.1.3 Accessing Attributes and Methods

Once we have an object of a class, we can use it to access the object’s attribute (or instance variable)
and methods using the following syntax:

1 object.attribute # syntax to access attributes

2 object.method(arguments) # syntax to access instance methods

Here is how we can access attribute and methods of the Circle object (see circle test1.py).

1 from circle import *

2

3 my_circle = Circle (5)

4

5 print("Circle of radius is",my_circle.radius)

6 print("Area of circle:", format(my_circle.get_area (), ".2f"))

7 print("Area of perimeter of circle:", format(my_circle.get_perimeter

(), ".2f"), end="\n\n")

8

9 Circle of radius is 5

10 Area of circle: 78.54

11 Area of perimeter of circle: 31.42

Notice that while calling instance methods, we are not passing any value to the self parameter
because Python automatically passes the reference to the object that was used to call the method
to the self parameter. So in this case, the object referenced by the variable my circle is passed to
the self parameter. However, you are not allowed to pass an argument to self parameter in your
code. If you try to do so, you will an error.

We can also change the object’s attribute using the following syntax:

1 object.attribute = new_val

The following code changes the value of my circle object’s radius attribute from 5 to 10.

1 my_circle.radius = 10

Finally, we can create as many objects as we want. Each object will have its own set of attributes.
Changing attributes for one object will not affect the attributes of other objects. For example (see
circle test2.py):

1 from circle import *

2

3 my_circle1 = Circle (5)

4 my_circle2 = Circle (10)

5 my_circle3 = Circle (15)

6

7 print("Address of Circle objects")

109

8 print("my_circle1:", id(my_circle1)) # print the address of Circle

object referenced by variable my_circle1

9 print("my_circle2:", id(my_circle2)) # print the address of Circle

object referenced by variable my_circle2

10 print("my_circle3:", id(my_circle3)) # print the address of Circle

object referenced by variable my_circle3

11 print()

12

13 print("Address of radius attribute")

14 print("my_circle1:", id(my_circle1.radius)) # print the address of

my_circle1 's radius attribute

15 print("my_circle2:", id(my_circle2.radius)) # print the address of

my_circle2 's radius attribute

16 print("my_circle3:", id(my_circle3.radius), end="\n\n") # print the

address of my_circle3 's radius attribute

17

18 print("Initial value of radius attribute: ")

19 print("my_circle1 's radius:", my_circle1.radius)

20 print("my_circle2 's radius:", my_circle2.radius)

21 print("my_circle3 's radius:", my_circle3.radius , end="\n\n")

22

23 # changing radius attribute of circle objects

24 my_circle1.radius = 50

25 my_circle2.radius = 100

26 my_circle3.radius = 150

27

28 print("After changing radius attribute of circle objects", end="\n\n

")

29

30 print("Final value of radius attribute: ")

31 print("my_circle1 's radius:", my_circle1.radius)

32 print("my_circle2 's radius:", my_circle2.radius)

33 print("my_circle3 's radius:", my_circle3.radius)

34

35 OUTPUT:

36

37 Address of Circle objects

38 my_circle1: 5236440

39 my_circle2: 5236608

40 my_circle3: 32036008

41

42 Address of radius attribute

43 my_circle1: 1586284752

44 my_circle2: 1586284912

45 my_circle3: 1586285072

46

47 Initial value of radius attribute:

48 my_circle1 's radius: 5

110

49 my_circle2 's radius: 10

50 my_circle3 's radius: 15

51

52 After changing radius attribute of circle objects

53

54 Final value of radius attribute:

55 my_circle1 's radius: 50

56 my_circle2 's radius: 100

57 my_circle3 's radius: 150

The my circle1, my circle2 and my circle3 refers to three different Circle objects stored in distinct
memory locations. In addition to that, each object’s attributes are also stored in distinct memory
locations.

11.1.4 Data Hiding

By default, the object’s attributes are visible outside the class. This is the reason why we were
are able to access radius outside of Circle. Most of the time we don’t give access to the object’s
attribute outside of the class because it may result in accidental corruption of the attribute’s data.
For example nothing is preventing us to store a string or list in radius:

1 my_circle = Circle (4)

2 my_circle.radius = "www"

We can prevent these problems by restricting access to the object’s attribute outside of the class
and by implementing accessor and mutator methods.

Data Hiding in Python can be achieved by defining private attributes. We can define a private
attribute by starting its name with two underscore characters (). So if we change self.radius to
self. radius, then we will not be able to access radius outside of the class. Similarly, we can define
a private method by starting its name with two leading underscores (). Private attributes and
methods can only be accessed inside the class. If you try to access them outside of the class you
will get an error.

To make the attribute value accessible outside the class we use accessor methods. An accessor
method is simply a method that returns the value of an object’s attribute but does not change it.
They are also commonly known as getter methods or simply getters and they usually start with
the word get. Here is the general format of the accessor method.

1 def get_attributeName(self):

2 return self.attributeName

Similarly, we can have mutator methods. A method which stores the value to object’s attribute is
known as mutator method. We call the mutator method when we need to change or set the value to
the object’s attribute. In addition to setting value to the object’s attribute, they may also provide
additional validation to validate the data before it is assigned to the object’s attribute. Mutator
method is also commonly known as setter methods or setters. Its general format is:

1 def set_attributeName(self , newvalue):

2 ## add data validation here

3 self.attributeName = newvalue

111

Here is a rewrite of Circle class which makes radius attribute private and also implements getter
and setter method for the radius attribute.

1 import math

2

3 class Circle:

4

5 def __init__(self , radius):

6 self.__radius = radius #

7

8 def get_area(self):

9 return math.pi * self.__radius ** 2

10

11 def get_perimeter(self):

12 return 2 * math.pi * self.__radius

13

14 # getter method for radius attribute

15

16 def get_radius(self):

17 return self.__radius

18

19 # setter method for radius attribute

20

21 def set_radius(self , radius):

22 if not isinstance(radius , int):

23 print("Error: ", radius , "is not an int")

24 return

25 self.__radius = radius

Notice that the set radius() method can only accept an integer argument, if you pass data of any
other type, it will report an error. Data validation in set radius() is achieved using isinstance()
function. The isinstance() function is used to test the type of the given object. It’s syntax is:

1 isinstance(object , class_name)

The object represent the object we want to test and class name represent the name of the class. If
object is an instance of class name, then isinstance() returns True. Otherwise False.

11.1.5 Passing Objects as Arguments to Function

Just like built-in objects, we can pass objects of user-defined classes to a function or method.

The following program (see circle test.py)shows how you can pass an object of type Circle to a
function named print circle info().

1 c1 = Circle (5.4)

2 c2 = Circle (10.5)

3

4 def print_circle_info(circle_obj):

5 print("#########################")

112

6 print("Radius of circle", format(circle_obj.get_radius (), "0.2f"

))

7 print("Perimeter of circle", format(circle_obj.get_perimeter (),

"0.2f"))

8 print("Area of circle", format(circle_obj.get_area (), "0.2f"))

9 print("#########################", end="\n\n")

10

11 print_circle_info(c1) # passing circle object c1 to

print_circle_info ()

12 print_circle_info(c2) # passing circle object c2 to

print_circle_info ()

13

14 OUTPUT:

15

16 #########################

17 Radius of circle 5.40

18 Perimeter of circle 33.93

19 Area of circle 91.61

20 #########################

21

22 #########################

23 Radius of circle 10.50

24 Perimeter of circle 65.97

25 Area of circle 346.36

26 #########################

11.2 Inheritance and Polymorphism

Inheritance is a mechanism which allows us to create a new class - known as child class - that is
based upon an existing class - the parent class, by adding new attributes and methods on top of
the existing class. When you do so, the child class inherits attributes and methods of the parent
class.

Inheritance really shines when you want to create classes that are very similar. All you need to do
is to write the code for the things that they have common in one class - the parent class. And then
write code for things that are very specific in a different class - the child class. This saves you from
duplicating a lot of code.

Suppose we are creating a program which deals with various shapes. Each shape has some common
properties. For example, the color of the shape, whether it is filled or not and so on. In addition to
that, there are some properties which vary from shape to shape. For example, area and perimeter.
The area of the rectangle is width * length whereas the area of the circle is πr2. At first, it might
be tempting to create classes for different shapes like this:

1 class Rectangle:

2 def __int__(self , color , filled , width , length):

3 self.__color = color

4 self.__filled = filled

113

5 self.__width = width

6 self.__length = length

7

8 def get_color(self):

9 return self.__color

10

11 def set_color(self , color):

12 return self.__color = color

13

14 def is_filled(self):

15 return self.__filled

16

17 def set_filled(self , filled):

18 return self.__filled

19

20 def get_area ():

21 return self.__width * self.__length

22

23 class Circle:

24 def __int__(self , color , filled , radius):

25 self.__color = color

26 self.__filled = filled

27 self.__radius = radius

28

29 def get_color(self):

30 return self.__color

31

32 def set_color(self , color):

33 return self.__color = color

34

35 def is_filled(self):

36 return self.__filled

37

38 def set_filled(self , filled):

39 return self.__filled

40

41 def get_area(self):

42 return math.pi * self.__radius ** 2

Did you notice that amount of duplicate code we are writing?

Both classes share the same color and filled attribute as well as their getter and setter methods.
To make the situation worse, If we want to update how any of these methods work, then we would
have to visit each class one by one to make the necessary changes. By using inheritance, we can
abstract out common properties to a general Shape class (parent class) and then we can create
child classes such as Rectangle, Triangle and Circle that inherits from the Shape class. A child
class inherits all the attributes and methods from its parent class, but it can also add attributes
and methods of its own.

114

To create a child class based upon the parent class we use the following syntax:

1 class ParentClass:

2 # body of ParentClass

3 # method1

4 # method2

5

6 class ChildClass(ParentClass):

7 # body of ChildClass

8 # method 1

9 # method 2

In Object Oriented lingo, when a class c2 inherits from a class c1, we say class c2 extends class c1
or class c2 is derived from class c1.

The following program (see Shape.py) demonstrates inheritance in action. It creates a class named
Shape, which contains attributes and methods common to all shapes, then it creates two child
classes Rectangle and Triangle which contains attributes and methods specific to them only.

1 import math

2

3 class Shape:

4

5 def __init__(self , color='black ', filled=False):

6 self.__color = color

7 self.__filled = filled

8

9 def get_color(self):

10 return self.__color

11

12 def set_color(self , color):

13 self.__color = color

14

15 def get_filled(self):

16 return self.__filled

17

18 def set_filled(self , filled):

19 self.__filled = filled

20

21

22 class Rectangle(Shape):

23

24 def __init__(self , length , breadth):

25 super ().__init__ ()

26 self.__length = length

27 self.__breadth = breadth

28

29 def get_length(self):

30 return self.__length

31

115

32 def set_length(self , length):

33 self.__length = length

34

35 def get_breadth(self):

36 return self.__breadth

37

38 def set_breadth(self , breadth):

39 self.__breadth = breadth

40

41 def get_area(self):

42 return self.__length * self.__breadth

43

44 def get_perimeter(self):

45 return 2 * (self.__length + self.__breadth)

46

47

48 class Circle(Shape):

49 def __init__(self , radius):

50 super ().__init__ ()

51 self.__radius = radius

52

53 def get_radius(self):

54 return self.__radius

55

56 def set_radius(self , radius):

57 self.__radius = radius

58

59 def get_area(self):

60 return math.pi * self.__radius ** 2

61

62 def get_perimeter(self):

63 return 2 * math.pi * self.__radius

64

65

66 r1 = Rectangle (10.5, 2.5)

67

68 print("Area of rectangle r1:", r1.get_area ())

69 print("Perimeter of rectangle r1:", r1.get_perimeter ())

70 print("Color of rectangle r1:", r1.get_color ())

71 print("Is rectangle r1 filled ? ", r1.get_filled ())

72 r1.set_filled(True)

73 print("Is rectangle r1 filled ? ", r1.get_filled ())

74 r1.set_color("orange")

75 print("Color of rectangle r1:", r1.get_color ())

76

77 c1 = Circle (12)

78

79 print("\nArea of circle c1:", format(c1.get_area (), "0.2f"))

116

80 print("Perimeter of circle c1:", format(c1.get_perimeter (), "0.2f"))

81 print("Color of circle c1:", c1.get_color ())

82 print("Is circle c1 filled ? ", c1.get_filled ())

83 c1.set_filled(True)

84 print("Is circle c1 filled ? ", c1.get_filled ())

85 c1.set_color("blue")

86 print("Color of circle c1:", c1.get_color ())

87

88 OUTPUT:

89

90 Area of rectagle r1: 26.25

91 Perimeter of rectagle r1: 26.0

92 Color of rectagle r1: black

93 Is rectagle r1 filled ? False

94 Is rectagle r1 filled ? True

95 Color of rectagle r1: orange

96

97 Area of circle c1: 452.39

98 Perimeter of circle c1: 75.40

99 Color of circle c1: black

100 Is circle c1 filled ? False

101 Is circle c1 filled ? True

102 Color of circle c1: blue

In lines 3-19, we have defined a Shape class. It is a parent class and only contains attributes and
methods common to all shapes. This class defines two private attributes color and filled, then
it provides getter and setter methods for those attributes.

In lines 22-45, we have defined a Rectangle class which inherits from Shape class. Pay close
attention to the syntax we are using. This line tells us that Rectangle class extends the Shape
class or Rectangle class is a child class of Shape class. Thus the Rectangle class inherits attributes
and methods defined in the Shape class. In addition to that, the Rectangle class adds two private
attributes, getter and setter methods for private attributes, as well as methods to calculate the
area and perimeter of the rectangle.

Notice the code in line 25.

1 super().__init__ ()

In Python, we use super() function to call the parent class methods. So the above code calls
Shape class’s init () method. This is required to set the values of attributes in the parent class.
Otherwise, when you try to access values of attributes defined in the parent class using getter or
setter methods, you will get an error.

Similarly, In lines 48-63 we have defined a Circle class. Just like Rectangle, it extends the Shape
class and adds few attributes and methods of its own.

The code in lines 66-86, creates Rectangle and Circle object and then calls get area(), get perimeter(),
get filled(), get color(), set color() and set filled() methods on these objects one by one. Notice how
we are able to call methods which are defined in the same class, as well as methods which are defined
on the parent class.

117

11.3 Multiple Inheritance

Python allows us to derive a class from several classes at once, this is known as Multiple Inheritance.
Its general format is:

1 Class ParentClass_1:

2 # body of ParentClass_1

3

4 Class ParentClass_2:

5 # body of ParentClass_2

6

7 Class ParentClass_3:

8 # body of ParentClass_1

9

10 Class ChildClass(ParentClass_1 , ParentClass_2 , ParentClass_3):

11 # body of ChildClass

The ChildClass is derived from three classes ParentClass 1, ParentClass 2, ParentClass 3. As a
result, it will inherit attributes and methods from all the three classes.

The following program demonstrates multiple inheritance in action (see multiple inherit.py):

1 class A:

2 def explore(self):

3 print("explore () method called")

4

5 class B:

6 def search(self):

7 print("search () method called")

8

9 class C:

10 def discover(self):

11 print("discover () method called")

12

13 class D(A, B, C):

14 def test(self):

15 print("test() method called")

16

17

18 d_obj = D()

19 d_obj.explore ()

20 d_obj.search ()

21 d_obj.discover ()

22 d_obj.test()

23

24 OUTPUT:

25 explore () method called

26 search () method called

27 discover () method called

28 test() method called

118

11.4 Polymorphism and Method Overriding

In literal sense, polymorphism means the ability to take various forms. In Python, polymorphism
allows us to define methods in the child class with the same name as defined in their parent class.

As we know, a child class inherits all the methods from the parent class. However, you will encounter
situations where the method inherited from the parent class doesn’t quite fit into the child class.
In such cases, you will have to re-implement method in the child class. This process is known as
method overriding.

If you have overridden a method in the child class, then the version of the method will be called
based upon the type of the object used to call it. If a child class object is used to call an overridden
method then the child class version of the method is called. On the other hand, if parent class
object is used to call an overridden method, then the parent class version of the method is called.

The following program demonstrates method overriding in action (see polymorphism.py):

1 class A:

2 def explore(self):

3 print("explore () method from class A")

4

5 class B(A):

6 def explore(self):

7 print("explore () method from class B")

8

9

10 b_obj = B()

11 a_obj = A()

12

13 b_obj.explore ()

14 a_obj.explore ()

15

16 OUTPUT:

17 explore () method from class B

18 explore () method from class A

Here b obj is an object of class B (child class), as a result, class B version of the explore() method
is called. However, the variable a obj is an object of class A (parent class), as a result, class A
version of the explore() method is called.

If for some reason you still want to access the overridden method of the parent class in the child
class, you can call it using the super() function as follows (see polymorphism2.py):

1 class A:

2 def explore(self):

3 print("explore () method from class A")

4

5 class B(A):

6 def explore(self):

7 super ().explore () # calling the parent class explore ()

method

8 print("explore () method from class B")

119

9

10

11 b_obj = B()

12 b_obj.explore ()

13

14 OUTPUT:

15 explore () method from class A

16 explore () method from class B

11.5 Operator Overloading

Operator Overloading lets you redefine the meaning of operator respective to your class. It is the
magic of operator overloading that we were able to use the + operator to add two numbers objects,
as well as concatenate two string objects.

1 >>>

2 >>> 10 + 400

3 410

4 >>>

5 >>> "ten" + "sor"

6 'tensor '
7 >>>

Here + operator has two interpretations. When used with numbers it is interpreted as an addition
operator whereas with strings it is interpreted as the concatenation operator. In other words, we
can say that the + operator is overloaded for int class and str class.

So how do we redefine or overload an operator for a particular class?

Operator Overloading is achieved by defining a special method in the class definition. The names
of these methods start and end with double underscores (). The special method used to overload
+ operator is called add (). Both int class and str class implements add () method. The
int class version of the add () method simply adds two numbers whereas the str class version
concatenates the string.

If the expression is for the form x + y, Python interprets it as x. add (y). The version of the
add () method called depends upon the type of x and y. If x and y are int objects then int class

version of the add () is called. On the other hand, if x and y are list objects then list class version
of the add () method is called.

1 >>>

2 >>> x, y = 10, 20

3 >>>

4 >>> x + y

5 30

6 >>> x.__add__(y) # same as x + y

7 30

8 >>>

9 >>> x, y = [11, 22], [1000, 2000]

10 >>>

120

11 >>> x + y

12 [11, 22, 1000, 2000]

13 >>>

14 >>> x.__add__(y) # same as x + y

15 [11, 22, 1000, 2000]

16 >>>

The following program (see op overload.py) demonstrates how we can override operators in a class.

1 import math

2

3 class Point:

4

5 def __init__(self , x=0, y=0):

6 self.__x = x

7 self.__y = y

8

9 # get the x coordinate

10 def get_x(self):

11 return self.__x

12

13 # set the x coordinate

14 def set_x(self , x):

15 self.__x = x

16

17 # get the y coordinate

18 def get_y(self):

19 return self.__y

20

21 # set the y coordinate

22 def set_y(self , y):

23 self.__y = y

24

25 # get the current position

26 def get_position(self):

27 return self.__x , self.__y

28

29 # change x and y coordinate by a and b

30 def move(self , a, b):

31 self.__x += a

32 self.__y += b

33

34 # overloading + operator

35 def __add__(self , point_obj):

36 return Point(self.__x + point_obj.__x , self.__y + point_obj.

__y)

37

38 # overloading - operator

39 def __sub__(self , point_obj):

121

40 return Point(self.__x - point_obj.__x , self.__y - point_obj.

__y)

41

42 # overloading < operator

43 def __lt__(self , point_obj):

44 return math.sqrt(self.__x ** 2 + self.__y ** 2) < math.sqrt(

point_obj.__x ** 2 + point_obj.__y ** 2)

45

46 # overloading <= operator

47 def __le__(self , point_obj):

48 return math.sqrt(self.__x ** 2 + self.__y ** 2) <= math.sqrt

(point_obj.__x ** 2 + point_obj.__y ** 2)

49

50 # overloading > operator

51 def __gt__(self , point_obj):

52 return math.sqrt(self.__x ** 2 + self.__y ** 2) > math.sqrt(

point_obj.__x ** 2 + point_obj.__y ** 2)

53

54 # overloading >= operator

55 def __ge__(self , point_obj):

56 return math.sqrt(self.__x ** 2 + self.__y ** 2) >= math.sqrt

(point_obj.__x ** 2 + point_obj.__y ** 2)

57

58 # overloading == operator

59 def __eq__(self , point_obj):

60 return math.sqrt(self.__x ** 2 + self.__y ** 2) == math.sqrt

(point_obj.__x ** 2 + point_obj.__y ** 2)

61

62 ## overriding __str__ function

63 def __str__(self):

64 return "Point object is at: (" + str(self.__x) + ", " + str(

self.__y) + ")"

65

66

67 p1 = Point(4, 6)

68 p2 = Point (10, 6)

69

70 print("Is p1 < p2 ?", p1 < p2) # p1 < p2 is equivalent to p1.

__lt__(p2)

71 print("Is p1 <= p2 ?", p1 <= p2) # p1 <= p2 is equivalent to p1.

__le__(p2)

72 print("Is p1 > p2 ?", p1 > p2) # p1 > p2 is equivalent to p1.

__gt__(p2)

73 print("Is p1 >= p2 ?", p1 >= p2) # p1 >= p2 is equivalent to p1.

__ge__(p2)

74 print("Is p1 == p2 ?", p1 == p2) # p1 < p2 is equivalent to p1.

__eq__(p2)

75

122

76 p3 = p1 + p2 # p1 + p2 is equivalent to p1.__add__(p2)

77 p4 = p1 - p2 # p1 - p2 is equivalent to p1.__sub__(p2)

78

79 print() # print an empty line

80 print(p1) # print(p1) is equivalent to print(p1.__str__ ())

81 print(p2) # print(p2) is equivalent to print(p2.__str__ ())

82 print(p3) # print(p3) is equivalent to print(p3.__str__ ())

83 print(p4) # print(p4) is equivalent to print(p4.__str__ ())

84

85 OUTPUT:

86 Is p1 < p2 ? True

87 Is p1 <= p2 ? True

88 Is p1 > p2 ? False

89 Is p1 >= p2 ? False

90 Is p1 == p2 ? False

91

92 Point object is at: (4, 6)

93 Point object is at: (10, 6)

94 Point object is at: (14, 12)

95 Point object is at: (-6, 0)

The Point class defines two private attributes x and y which represent x and y coordinates in a
plane. Then it defines getter and setter methods for those attributes. It also defines, get position()
and move() method to get the current position and change coordinates respectively.

In line 35, we have overloaded the + operator for the Point class. The add () method creates
a new Point object by adding individual coordinates of one Point object to another Point object.
Finally, it returns the newly created object to its caller. This allows us to write expressions like
this:

1 p3 = p1 + p2

where p1, p2 and p3 are three Point objects.

Python interprets the above expression as p3 = p1. add (p2), and calls the add () method to
add two Point objects. The return value from the add () method is then assigned to p3. It
is important to note that when the add () method is called, the value of p1 is assigned to the
self parameter and the value of p2 is assigned to the point obj parameter. The rest of the special
methods works in a similar fashion.

11.6 object : The Base Class (Optional)

In Python, all classes inherit from the object class implicitly. It means that the following two class
definitions are equivalent.

1 class MyClass:

2 pass

3

4 class MyClass(object):

5 pass

123

It turns out that the object class provides some special methods with two leading and trailing
underscores which are inherited by all the classes. Here are some important methods provided by
the object class.

1. new ()

2. init ()

3. str ()

The new () method creates the object. After creating the object it calls the init () method to
initialize attributes of the object. Finally, it returns the newly created object to the calling program.
Normally, we don’t override new () method, however, if you want to significantly change the way
an object is created, you should definitely override it.

The str () method is used to return a nicely formatted string representation of the object. The
object class version of str () method returns a string containing the name of the class and its
memory address in hexadecimal. For example:

1 class Jester:

2 def laugh(self):

3 return print("laugh () called")

4

5 obj = Jester ()

6 print(obj)

7

8 <__main__.Jester object at 0x0000000002167E80 >

Sure, it is not very helpful. We can easily override this method by defining a method named str ()
in the Jester class as follows.

1 class Jester:

2 def laugh(self):

3 return "laugh () called"

4

5 def __str__(self):

6 return "A more helpful description"

7

8 obj = Jester ()

9 print(obj)

10

11 A more helpful description

124

Appendix A

Using the Command Line

A.1 Using the Command Line

In CDS 230, you will mainly run Python programs two ways: using the Spyder IDE or using the
command line. This is a small guide in using the command line.

The command-line shell, sometimes called the command prompt or the terminal, is a tool that lets
you control your computer using only textual commands. It offers a lot of power and simplicity
(simplicity is different from ease of use).

Just like with a graphical file browser such as the Finder or Windows Explorer, there is a ”current
directory” that you are currently working in. (”Directory” and ”folder” are synonyms.) You can
issue commands that operate in that directory, or you can change the current directory.

This guide presents an example transcript of using the shell for Unix (Mac/Linux) and Windows
machines. The transcript assumes that the student has already installed the Anaconda Python
Distribution, and has created the CDS-230 directory structure as described in the lecture. When
you run similar commands, there may be slight differences from the example transcript, such as
the number, names, and times of files.

See the section that is relevant to you:

A.1.1 Mac/Linux

Here are most of the commands you will need to use:

• pwd - print the absolute pathname of your current working directory

• cd directory - change your working directory to the given directory

• cd .. - change your working directory to the parent of the current working directory

• ls - list the contents of the current directory (”ls” is short for ”list”)

• mkdir cds-230 - mkdir creates a directory named cds-230

• python - run the Python interpreter

125

http://en.wikipedia.org/wiki/Shell_(computing)

• python program.py - run the Python program that is stored in the program.py file You can
open a command-line shell by running the terminal program.

In the example below, $ is the prompt at which the user types commands. What follows the $
prompt was printed by the command-line shell.

$ pwd

/home/me

$ ls

Desktop Downloads Music Pictures Public Templates Videos

Documents Dropbox Old Programming Software Ubuntu One VirtualBox VMs

$ cd Desktop

$ pwd

/home/me/Desktop

$ ls

cds-230

$ cd cds-230

$ pwd

/home/me/Desktop/cds-230

$ ls

data scripts

$ cd scripts

$ pwd

/home/me/Desktop/cds-230/scripts

$ ls

helloworld.py

$ python helloworld.py

Hello world!

A.1.2 Windows

Here are most of the commands you will need to use:

• echo %cd% - print the absolute pathname of your current working directory

• cd directory - change your working directory to the given directory

• cd .. - change your working directory to the parent of the current working directory

• dir - list the contents of the current directory (”ls” is short for ”list”)

• mkdir cds-230 - mkdir creates a directory named cds-230

• python - run the Python interpreter

• python program.py - run the Python program that is stored in the program.py file You can
open a command-line shell by running the terminal program.

126

You can open a command-line shell by running the cmd program. You should have a Command
Prompt shortcut located in the Start Menu, in the Accessories submenu of All Programs, or on
the Apps screen for Windows 8. About.com has more detailed instructions about starting the
command prompt.

In the example below, C:\Users\Me> is the prompt at which the user types commands. What
follows the prompt was printed by the command-line shell.

C:\Users\Me>echo \%cd\%

C:\Users\Me

C:\Users\Me>dir

Directory of C:\Users\Me

06/02/2012 08:11 PM <DIR> .

06/02/2012 08:11 PM <DIR> ..

07/18/2012 05:03 PM <DIR> Contacts

01/10/2013 07:24 PM <DIR> Desktop

07/18/2012 05:03 PM <DIR> Documents

01/09/2013 09:59 PM <DIR> Downloads

07/18/2012 05:03 PM <DIR> Favorites

07/18/2012 05:03 PM <DIR> Links

07/18/2012 05:03 PM <DIR> Music

11/28/2012 09:19 PM <DIR> Pictures

11/29/2012 01:42 AM <DIR> Saved Games

07/18/2012 05:03 PM <DIR> Searches

11/27/2012 09:06 PM <DIR> Videos

C:\Users\Me>cd Desktop

C:\Users\Me\Desktop>mkdir cds-230

C:\Users\Me\Desktop>dir

Directory of C:\Users\Me\Desktop

01/10/2013 07:25 PM <DIR> .

01/10/2013 07:25 PM <DIR> ..

01/10/2013 07:25 PM <DIR> cds-230

C:\Users\Me\Desktop>cd cds-230

C:\Users\Me\Desktop>mkdir scripts

C:\Users\Me\Desktop>mkdir data

C:\Users\Me\Desktop\cds-230>dir

Directory of C:\Users\Me\Desktop\cds-230

01/10/2013 07:25 PM <DIR> .

01/10/2013 07:25 PM <DIR> ..

01/10/2013 07:25 PM <DIR> data

127

http://pcsupport.about.com/od/commandlinereference/f/open-command-prompt.htm
http://pcsupport.about.com/od/commandlinereference/f/open-command-prompt.htm

01/10/2013 07:24 PM <DIR> scripts

C:\Users\Me\Desktop\cds-230>cd scripts

C:\Users\Me\Desktop\cds-230\homework2>dir

Directory of C:\Users\Me\Desktop\cds-230\scripts

01/10/2013 07:24 PM <DIR> .

01/10/2013 07:24 PM <DIR> ..

01/09/2013 09:26 PM 13 helloworld.py

C:\Users\Me\Desktop\cds-230\scripts>python helloworld.py

Hello world!

128

Appendix B

Computational Problem Solving

Computational problem solving does not simply involve the act of computer programming. It is a
process, with programming being only one of the steps. Before a program is written, a design for
the program must be developed. And before a design can be developed, the problem to be solved
must be well understood. Once written, the program must be thoroughly tested. These steps are
outlined below.

ANALYSIS

Clearly understand the problem

Know what constitutes a solution

DESIGN

Determine what type of data is needed

Determine how the data is to be structured

Find another design appropriate algorithm

IMPLEMENTATION

Represent data within programming language

Implement algorithms in programming language

TESTING

Test the program on a selected set of problem instances

Correct and understand the causes of any errors found

1. ANALYSIS

(a) Understanding the problem. Once a problem is clearly understood, the fundamental
computational issues for solving it can be determined.

(b) Knowing what constitutes a solution. For some problems, there is only one solution. For
others, there may be a number (or infinite number) of solutions. Thus, a program may
be stated as finding

129

• A solution

• An approximate solution

• A best solution

• All solutions

2. DESIGN

(a) Describing the data needed. This, of course, depends on the problem at hand. We can
use a list, a table, a matrix, etc.

(b) Describing the Needed Algorithms. For some problems, there is only one solution. When
solving a computational problem, either suitable existing algorithms may be found or
new algorithms must be developed. Algorithms that work well in general but are not
guaranteed to give the correct result for each specific problem are called heuristic algo-
rithms.

3. IMPLEMENTATION Design decisions provide general details of the data representation and
the algorithmic approaches for solving a problem. The details, however, do not specify which
programming language to use, or how to implement the program. That is a decision for the
implementation phase. Since we are programming in Python, the implementation needs to be
expressed in a syntactically correct and appropriate way, using the instructions and features
available in Python.

4. TESTING Software testing is a crucial part of software development. Testing is done in-
crementally as a program is being developed, when the program is complete, and when the
program needs to be updated.

130

Appendix C

References

Tutorials

Tutorials for beginners:
https://www.w3schools.com/PYTHON/python_lists.asp

https://www.tutorialspoint.com/python/

A Python tutorial from the official Python website:
https://docs.python.org/3/tutorial//

For exact syntax and semantics of the Python language:
http://docs.python.org/3/

Reference manual of the standard library:
http://devdocs.io/python

Online Tools

The Python Online Tutor allows you to visualize execution of Python code.
http://people.csail.mit.edu/pgbovine/python/tutor.html

Online Python interpreter: Just in case Jupyter Notebook is not enough.
https://www.onlinegdb.com/online_python_interpreter

Modeling and Simulation

This book has material similar in spirit to CDS230 but slightly different approach:
http://greenteapress.com/wp/modsimpy

131

	Setup
	The Python Programming Language
	Your first program
	What is a Python program?
	Hello, world!
	Executing a Python Program
	Four Ways to Run Python
	What to use?

	Input and Output
	Modules
	Intrinsic Functions
	Optional Arguments

	Errors
	Programming Style
	References

	Variables and Data Types
	Fundamentals
	Operators
	Summary of Python Arithmetic Operators
	Python Expressions

	Keywords and Identifiers
	Variables
	Assignment statements
	Namespaces

	Built-in Data Types
	Fundamental Types

	Formatting Text and Numbers
	Number Formatting
	string.format() basics
	F-strings

	Problem Solving with Python

	Control Flow
	Boolean Expressions (Conditions)
	Conditional Operators
	Logical Operators

	Conditionals
	if Statements

	Loops
	Indefinite Iteration: while Loops
	for Loops

	Lists and Tuples
	Sequence Types
	Lists
	Initialization
	Accessing and Editing Lists
	Slicing
	Operators
	Iterating Over List Elements vs. List Index Values
	List Comprehensions
	Traversing Multiple Lists Simultaneously
	Copying Lists

	Tuples
	Why use a tuple instead of a list
	Nested Data Structures

	Dictionaries and Sets
	Sets
	Properties
	Initialization
	Set operations
	Modifying a Set

	Dictionaries
	Properties
	Initialization
	Dictionary Operations

	Functions
	Functions
	Defining Functions
	Docstrings
	Value-Returning Functions
	Non-Value-Returning Functions
	Calling Functions
	Parameter Passing
	Keyword Arguments
	Default Arguments
	Variable Scope
	Functions as Arguments to Functions
	The Main Program
	Lambda Functions

	A Bioinformatics Example
	Counting Letters in DNA Strings

	File IO
	Reading from a text file
	Reading a Mixture of Text and Numbers
	With statements
	Writing to a text file
	Binary Files
	More on encoding and decoding: Unicode characters
	ord() and chr()

	Arrays
	Lists as Arrays
	2D Arrays
	Other Arrays in Python
	Basic Typed Arrays
	Immutable Arrays of Unicode Characters
	Immutable Arrays of Single Bytes
	Mutable Arrays of Single Bytes

	Numpy
	When to Use Numpy
	Numpy Data Types
	NumPy Array Fundamentals
	Other ways to create arrays

	NumPy Array Operations
	Basic operations
	Comparison operators and value testing
	Array item selection and manipulation
	Vector and matrix mathematics
	Statistics
	Random Numbers
	Note about operations

	Numpy and Text IO

	Basic Plotting
	Matplotlib: Pylab
	Matplotlib: Pyplot

	Object Oriented Programming
	Classes
	Defining a class
	Creating objects
	Accessing Attributes and Methods
	Data Hiding
	Passing Objects as Arguments to Function

	Inheritance and Polymorphism
	Multiple Inheritance
	Polymorphism and Method Overriding
	Operator Overloading
	object : The Base Class (Optional)

	Using the Command Line
	Using the Command Line
	Mac/Linux
	Windows

	Computational Problem Solving
	References

