

Validation of Network Models

Dr. Hamdi Kavak Computational and Data Sciences Department

> http://www.hamdikavak.com hkavak@gmu.edu

Weekly schedule

- Week 13 (today Nov 13): Validation of Network Models
- Week 14 (Nov 20): Ethics of Model Design and Use
- Week 15 (Nov 27): Project presentations
- Week 16 (Dec 4): READING DAYS no lecture
- Week 17: No meeting final paper due on Dec 8 @ 11:59 pm

Final paper presentations

- Slides are due at noon on the day of your presentation (Nov 27)
- Presentation length: 25 minutes (main) + 5 minutes (Q&A)

Short Writing Assignments (SWAs)

- SWA 9: Was due today
- SWA 10: Due next week (Nov 20)
- If you are missing any previous assignments, you can finish them until next class (Nov 20).
 - I will be done with all SWA grading next week

Validation of Network Models

Network models

• A formal way of representing and studying complex systems based on the concept of **graphs**.

Network models

- A formal way of representing and studying complex systems based on the concept of **graphs**.
- The origin of graphs dates to 1736
- Leonhard Euler proposed the problem called "The Seven Bridges of Königsberg"
 - Can seven bridges be visited in one pass with the condition that we finish at the start point?

Social Complexity

Building blocks

10 M Social Complexity

_ Source: Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. *Commentarii academiae scientiarum Petropolitanae*, 128-140.

11 M Social Complexity

_ Source: Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. *Commentarii academiae scientiarum Petropolitanae*, 128-140.

12 M Social Complexity

Source: Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. *Commentarii academiae scientiarum Petropolitanae*, 128-140.

Building blocks

- Nodes can be anything that can connect to other nodes
 - E.g.: people, countries, cities, bus stations, buildings, molecules, web pages, social media users, cell towers, positions in an organization, military units.

Building blocks

- Nodes can be anything that can connect to other nodes
 - E.g.: people, countries, cities, bus stations, buildings, molecules, web pages, social media users, cell towers, positions in an organization, military units.
- Some graph types

CSI 709/CSS 739 - Verification and Validation of Models — © Dr. Hamdi Kavak

Social Complexity

Adjacency matrix

 $\mathbf{2}$

 A matrix to represent the connectivity between nodes

• Denoted by A

(0	0	0	1)	(0	1	0	1)	(0	1	1	1)
0	0	0	1	1	0	1	0	1	0	1	1
0	0	0	1	0	1	0	1	1	1	0	1
(1	1	1	0)	$\lfloor 1$	0	1	o)	$\lfloor 1$	1	1	0)

Source: https://mathworld.wolfram.com/AdjacencyMatrix.html

Some influential people in network science*

Pául Erdős

Alessandro Vespignani

Alfréd Rényi

Albert-László Barabási

Steven Strogatz

Réka Albert

Duncan J. Watts

Aaron Clauset

Petter Holme

Small world networks

Source: https://www.youtube.com/watch?v=NRWSF1c0Ez0

Milgram, S. (1967). The small world problem. *Psychology today*, 2(1), 60-67.

Small world networks

- Most nodes are not connected to most of other nodes.
- Despite the lack of dense connection, reaching from a node to another node does not need many hops.
- With increased node size, typical distance between two nodes grow logarithmically.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. *Nature*, 393(6684), 440-442.

Regular to random networks

Maier, B. F. (2019). Generalization of the small-world effect on a model approaching the Erdős–Rényi random graph. Scientific reports, 9(1), 1-9.

19 M Social Complexity

Network degree

- Degree of a node is the count of links to that node.
- Degree of node *i* is denoted as k_i where $k_i = \sum_j a_{ij}$
 - Here a_{ij} represents *i*th row and *j*th column in *A*.

Network degree

- Degree of a node is the count of links to that node.
- Degree of node *i* is denoted as k_i where $k_i = \sum_j a_{ij}$
 - Here a_{ij} represents *i*th row and *j*th column in *A*.

Network degree distribution

• Captures the frequency of degrees of all nodes of the network.

Network degree distribution

- Captures the frequency of degrees of all nodes of the network.
- One of the important structural indicators of a network.
 - Compare two networks by their degree distribution.

Scale-free networks

- Degree distribution follows a power law.
- Fraction of nodes with k links -> P(k) where $P(k) \sim k^{-\gamma}$ with $2 < \gamma < 3$

Scale-free networks

- Degree distribution follows a power law.
- Fraction of nodes with k links -> P(k) where $P(k) \sim k^{-\gamma}$ with $2 < \gamma < 3$

Source: https://commons.wikimedia.org/wiki/File:Barabasi-albert_model_degree_distribution.svg "The degree distribution of a Barabasi Albert network with 200000 nodes and with 2 new edges in each step. The exponent is -2.78 (from 2 to the max)" CSI 709/CSS 739 - Verification and Validation of Models — © Dr. Hamdi Kavak

Random networks vs. scale-free networks

Random Network

Scale-Free Network

Bell Curve Distribution of Node Linkages Power Law Distribution of Node Linkages solution of Node Linkages Number of Links Number of Links

Source: Barabási, A. L., & Bonabeau, E. (2003). Scale-free networks. Scientific american, 288(5), 60-69.

Spatially-explicit networks

- A network model in which the location of nodes matter.
 - E.g.: road network, power grid network, cell network, supply chain network

Cell tower network

M Social Complexity

GMU Campus Map

Source: Ogulenko, A., Benenson, I., Toger, M., Östh, J., & Siretskiy, A. (2021). The fallacy of the closest antenna: Towards an adequate view of device location in the mobile network. *arXiv preprint arXiv:2109.02154*.

CSI 709/CSS 739 - Verification and Validation of Models — $\ensuremath{\mathbb{C}}$ Dr. Hamdi Kavak

Nodes can have many attributes

- Location (i.e., coordinates)
- Bandwidth (if cell tower)
- Age (if human or animal)
- Gender (if human or animal)
- Type (family, workplace, school)

Multi-layer networks

• Nodes of different types are grouped as a layer

Source: Sim, A., Yaliraki, S. N., Barahona, M., & Stumpf, M. P. (2015). Great cities look small. Journal of The Royal Society Interface, 12(109), 20150315.

M Social Complexity

29

Networks vs. social networks

• Social network is a specialized type of a network that captures a social phenomenon such as friendship.

Online social networks

• Online social networks mostly established based on homophily, leading to echo chambers.

Online social networks

• Online social networks mostly established based on homophily, leading to echo chambers.

Source: Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrociocchi, W., & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9).

CSI 709/CSS 739 - Verification and Validation of Models — $\ensuremath{\mathbb{C}}$ Dr. Hamdi Kavak

M Social Complexity

Dunbar's number

- Indicates a maximum number of relationship (i.e., social connections) one can handle comfortably.
- Based on average human brain size.
- Often suggested to be between 100-250 while 150 is considered typical.

Dunbar, R. I. (1992). Neocortex size as a constraint on group size in primates. Journal of human evolution, 22(6), 469-493.

DVNBAR'S NUMBER: 150

TYPICAL NUMBER OF PEOPLE WE CAN KEEP TRACK OF AND CONSIDER PART OF OUR ONGOING SOCIAL NETWORK

Source: https://sketchplanations.com/dunbars-number-150

Community detection

- One of the common tasks in many network problems
- Grouping of similar nodes in a network (often social network)
 - Based on node features and the topology of the network
- Similar to clustering in machine learning
- No Free Lunch theorem applies

Community detection

- Different algorithms can overfit or underfit
- Ghasemian, Hosseinmardi, & Clauset (2019) studied "16 state-of-the-art community detection algorithms applied to a novel benchmark corpus of 572 structurally diverse real-world networks"

Algorithm	Number of	Partition	Link	Link	Overall Fit
	Communities,	Туре	Prediction	Description	
	k		Benchmark	Benchmark	
Q	larger	non-probabilistic	poor	good	over fits
Q-MR	larger	non-probabilistic	poor	good	over fits
Q-MP	smaller	spectral/ non-probabilistic	poor	poor	under fits
Q-GMP	smaller	spectral/ non-probabilistic			inconclusive
B-NR (SBM)	smaller	probabilistic	very good	moderate	well-fitted
B-NR (DC-SBM)	smaller	probabilistic	moderate	very good	over fits, modestly
B-HKK (SBM)	smaller	probabilistic	good	moderate	under fits, modestly
cICL-HKK (SBM)	smaller	probabilistic	good	moderate	under fits, modestly
Infomap	larger	non-probabilistic	moderate	moderate	over fits
MDL (SBM)	smaller	probabilistic	good	poor	under fits
MDL (DC-SBM)	smaller	probabilistic	very good	moderate	well-fitted
S-NB	smaller	spectral	moderate	moderate	uneven fits
S-cBHm	smaller	spectral			inconclusive
S-cBHa	smaller	spectral			inconclusive
AMOS	larger	non-probabilistic			inconclusive
LRT-WB (DC-SBM)	larger	non-probabilistic			inconclusive

Source: Ghasemian, A., Hosseinmardi, H., & Clauset, A. (2019). Evaluating overfit and underfit in models of network community structure. *IEEE Transactions on Knowledge and Data Engineering*, 32(9), 1722-1735.

Identifying central nodes

- Several measures are proposed
 - Degree centrality
 - Closeness centrality
 - Betweenness centrality
 - PageRank
 - ...
- Has applications to identify the most influential node.
 - Who is the best person to propagate our message?

Social Complexity

Network generation

- Rule-based network generation
 - E.g.: Preferential attachment
 - Advantage: simple to implement
 - Disadvantage: time notion and detail
- Agent-based network generation
 - E.g.: Co-location-based
 - Advantage: more grounded in real world and can capture time
 - Disadvantage: complex to implement

Social Complexity

Example model: French Quarter epidemic

Source: https://www.youtube.com/watch?v=3pBdnT8a9LA CSI 709/CSS 739 - Verification and Validation of Models — © Dr. Hamdi Kavak

Synthetic population generation

		Create Individuals and Space					
A start and a start and a		Tasks	Data	Python Package			
and the second	Step 1	Create Living Space for Home, Work Locations on Road Networks	Road Network	Geopandas, Pandas, Numpy			
A Company of the second		Create Individuals	Census Data 2010	Pandas, Random			
and the second sec		Group Individuals into Household	Census Data 2010	Pandas, Itertools, Numpy, Random			
	ſ	ieeA	on Davtime Locations				
and a start of the second		Tasks	Data	Python Package			
	Step 2	Create Workplaces and Assign them to Individuals	Data Generated from Step 1, LEHDs LODES	Pandas, Sklearn, Numpy, Random			
A STATE OF STATE		Place Home and Work Places on the Spaces	Road Network	Pandas, Geopandas			
	ľ	 Assign Educational Sites based on age and the closest distance 	Data Generated from Step 1, EPA OEI	Pandas, Geopandas			
		Create Social Networks					
and all stands		Tasks	Data	Python Package			
e534 77.1 70.4 79.0 70.4 70.0 70.0 70.0 70.0 70.0 70.0 70	Step 3 <	Create 3 types of Social Networks (e.g., Household, Work, and Educational)	Data Generated from Step 1 & 2	Pandas, Networkx			

Source: Jiang, N., Kavak, H., Kennedy, W. G., & Crooks, A. T. (2021). Computational Urban Science (Under review)

