
Applying Statistical Debugging for Enhanced Trace Validation of

Agent-Based Models

Ross J. Gore1, Christopher J. Lynch1,2*, and Hamdi Kavak2, 3

1 Virginia Modeling, Analysis, and Simulation Center, Old Dominion University

2 Department of Modeling, Simulation & Visualization Engineering, Old Dominion University

3 Department of Industrial and Systems Engineering, Turkish Military Academy

Abstract

The verification and validation (V&V) of Agent-based Models (ABMs) is challenging. The

underlying structure of the model and the agents can change over time. Furthermore, the

theoretical context of the model is often very different from established models of the same

phenomenon. In an effort to overcome these issues, Trace Validation is becoming a common

V&V mechanism within the Agent-based Modeling community. In Trace Validation,

characteristics of agents and the model are tracked over time and then analyzed by subject matter

experts (SMEs) to gain insight into unexpected and potentially invalid output. Here, we present

our tool, the V&V Calculator, which applies predicates employed in the field of software

engineering. The result is a structured trace validation approach with quantifiable measures that

facilitates SME exploration and insight into the causes of unexpected output within ABMs.

Keywords: statistical debugging, trace validation, agent-based models, emergent behavior

Submitted 06 September 2015 for the Special Issue of Simulation: Modelling and Simulation in

the Era of Big Data and Cloud Computing: Theory, Framework and Tools

1. Introduction

The Agent-based Modeling paradigm allows for the direct representation of individual entities

and their interactions within an environment to explore system level behaviors [1]. A plethora of

work has shown that ABM outcomes can provide novel insight into the phenomenon that

modelers did not originally anticipate [1—3]. Furthermore, ABMs also can include different

stochastic processes and multiple options for communication. These features create opportunities

for implementation errors that also lead to outputs that modelers did not originally anticipate [4].

* Corresponding author

Virginia Modeling, Analysis and Simulation Center, Old Dominion University

1030 University Blvd. Suffolk, VA 23435

Email: cjlynch@odu.edu – Phone number: 757-686-6248

Given these inherent complexities, it is important for unexpected ABM outputs to undergo

validation.

Trace validation is a means to this end. Trace validation entails periodically collecting data from

a simulation during execution (i.e. tracing) in a manner that facilitates the explanation of what

agent or model characteristics cause the unexpected output [5]. Specifically, once a SME has

observed an unexpected output and decided to employ trace validation, the SME must (1) run the

simulation to create traces that generate expected and unexpected output, (2) analyze the traces

to find the characteristics of the agents and the model that cause the unexpected output, and (3)

determine if the output reflects a valid but previous unanticipated output or an invalid output

resulting from an error [6, 7].

The chief drawback of trace validation is that the creation of traces results in large volumes of

data that is difficult to analyze and too time-consuming for SMEs to interpret [5, 8]. Our

approach for enhanced trace validation directly addresses this challenge by providing a tool for

SMEs to automatically search for and quantify the extent to which traced agent and model

characteristics within the ABM cause the unexpected output [9].

The novelty of our approach is the application of statistical debugging. Statistical debugging is

an area of research within the field of computer science focused on the automatic localization of

faults in software. We apply the same principles that localize faults in software to analyze and

quantify the extent to which an agent and the model characteristic included in a trace cause an

unexpected output. We automate this analysis and provide a graphical interface for SMEs to

query the collected traces. The result is a more efficient and effective mechanism for trace

validation because the burden of analysis and interpretation for SMEs is reduced.

The remainder of the paper proceeds as follows. Section 2 provides background information on

trace validation of ABMs and statistical debugging. Section 3 provides a description of our

enhanced trace validation approach and how it is realized in a tool called the V&V Calculator.

Section 4 evaluates the effectiveness of our proposed approach relative to several other versions

of our tool we implemented. In Section 5, we discuss the validity of evaluation and the

assumptions and limitations of our work. Finally, we review our contributions and offer direction

for future work.

2. Background

A large number of V&V techniques have been cataloged. These techniques can be classified as

informal (rely on human reasoning and subjectivity [5]), formal (based on mathematical proofs

of correctness [5, 10]), static (applied to the simulation’s source code while it is not being

executed [10]), and dynamic (applied to the simulation during execution under different

conditions [11, 12]).

In this paper, we combine two dynamic techniques that utilize simulation data collected during

execution: (1) trace validation and (2) statistical debugging. In Sections 2.2 and 2.3, we present

background material and work related to each. However, first we discuss work related to

construction of ABMs and describe why our approach to enhanced trace validation is

independent of ABM construction.

2.1 ABM Construction

The underlying structure of an ABM can change over time and the theoretical context of the

model is often very different from established models of the same phenomenon that are

constructed using other modeling paradigms. ABMs deal with human-like behaviors or human-

like thinking that requires validating both the system level (macro-level) and individual level

(micro-level components) of the model [4]. To consider an ABM as valid, agent behaviors,

relationships, and interactions must correctly correspond to the individuals that they represent

[13]. Windrum et al. [14] identify several challenges with Agent-based Modeling, including the

lack of an accepted way to build and analyze ABMs that could contribute to the selection of the

best sensitivity analysis approach to V&V the model. While we do not address the ability to

build ABMs, our enhanced trace validation approach can be applied to any ABM regardless of

the approach used for construction as long as the internal characteristics of the agents and the

model can be traced and the outcome of interest can be quantified as an output.

2.2 Trace Validation

Trace validation entails periodically collecting data from a simulation during execution (i.e.

tracing) in a manner that facilitates the identification of unexpected outputs and the agent or

model characteristics that lead to these outputs. The traces enhance the internal validity of the

ABM because they offer a means of comparing multiple simulation replications for the same

inputs to identify any inconsistencies in the outputs [6, 8].

Trace Validation includes various forms of execution testing such as execution monitoring,

execution profiling, and execution tracing all of which focus on examining micro-level

occurrences within the model to reveal errors [5]. Traces track the characteristics of the agent

and the model over time to determine if the logic is correct and the simulation produces

believable values [11, 15—17].

However, traces require manual analysis by the SME, which is can be too burdensome to be

useful [8]. As a result there have been several efforts to provide SMEs with an interface to

collect traces. Xiang et al. [8] present a natural organic matter model and a process for

conducting validation that includes traces, graphs and charts, and model-to-model comparisons.

They use graphical charts to test if the produced data curves match with the expected normal

distribution curve and they determine that the traces and the visual methods do increase

confidence that the model is correct; however, they also state that statistical methods are needed

to further validate the model.

Courdier et al. [18] use the Geamas Virtual Laboratory tool to collect traces of a Biomass ABM

for analyzing the management of animal wastes to explore for unexpected outputs. These traces

collect either (1) sets of messages exchanged between agents or (2) an accounting of simulation

execution per agent or group of agents. They conducted an experiment yielding 20,000 traces of

textual messages exchanged between agents. Visualization tools are applied to inspect these

traces and identify interactions that lead to successful negotiations between agents. Their

visualization features filter the traces based on specific groups of agents or specific

characteristics. However, the Geamas Virtual Laboratory tool does not allow for the visual

interpretation of traces or graphics for populations in excess of several dozen agents at the

individual level [18].

While both of these approaches assist SMEs in the identification of characteristics within traces

that cause unexpected outputs, they rely on visual inspection. Visualization can be a powerful

mechanism to facilitate insight but its effectiveness, especially relative to other visual

representations, is difficult to evaluate. Our enhanced trace validation method facilitates SME

insight without visualization by leveraging existing work in the field of statistical debugging. It

provides an automated means to search across multiple traces and quantify the extent to which

different combinations of agent and/or model characteristics cause an unexpected output within

an ABM. Since it does not rely on a visual interpretation for its analysis, it can be easily

evaluated against other alternatives.

Next, we review background material needed to understand statistical debugging, then we

present our enhanced trace validation approach, and finally we objectively evaluate its

effectiveness.

2.3 Statistical Debugging

Our approach to trace validation employs predicates that are used in statistical debuggers.

Statistical debuggers isolate the causes of software faults using a set of inputs, corresponding

execution traces, and a labeling of the execution traces as passing or failing [19]. The execution

traces typically reflect the coverage of individual statements. The debuggers assign

suspiciousness scores to statements to guide developers in locating faults. Equations 1-3 define

the suspiciousness of a statement s.

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑜𝑓 𝑓𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠

𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠
 (1)

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠 =
𝑜𝑓 𝑓𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠

𝑜𝑓 𝑓𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑒𝑠
 (2)

𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠𝑠 =
2∗𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠∗𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠+𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠
 (3)

The correlations of a statement reflects the likelihood of a statement s appearing in a failing

execution trace, while the coverages of a statement reflects the likelihood that a failing execution

trace includes statement s. The suspiciousnesss of a statement balances these two rate measures

via the harmonic mean. Developers examine the statements in decreasing order of suspiciousness

until the fault is discovered. For the approach to be effective, faulty statements must generally

have higher suspiciousness scores than non-faulty statements.

In addition to profiling program statements, most statistical debuggers employ conditional

propositions, or predicates, to record the values assigned to variables in an execution trace. For

example, three predicates can be instrumented for every assignment statement in a program to

test if a value being assigned to a variable is greater than, less than, or equal to zero. The

suspiciousness of these predicates is calculated using (1) the failing execution traces where the

predicate is true, (2) the total number of execution traces where the predicate is true, and (3) the

total number of failing execution traces.

The addition of predicates (including those that are more complex than the three described

above) enables statistical debuggers to analyze relationships within and among variable values.

In theory and in practice this has been shown to improve effectiveness of the statistical

debugging [9, 19—21]. Next, we describe the different types of predicates and how these

predicates can be combined.

2.3 Predicates

Statistical debuggers employ two different types of predicates (single variable, scalar pairs) at

two different levels of specificity (static and elastic) to localize faults. The choice of type and the

specificity-level defines a unique combination of conditions related to the variable(s) that the

predicate captures. Two or more predicates can also be combined by generating compound

predicates to gather insight about a variable’s behavior at an additional level of granularity. Here

we review predicate types, their specificity levels, and describe how they can be combined in a

compound predicate.

2.3.1 Single Variable Predicates
A single variable predicate partitions the set of possible values that can be assigned to a variable

x. Single variable predicates can be created at two levels of specificity: the static level and the

elastic level. The most basic single variable predicates are static. Static single variable

predicates are employed to partition the values for each variable x around the number zero: (x >

0), (x ≥ 0), (x = 0), (x ≤ 0) and (x < 0). These single variable predicates are referred to as static

because the decision to compare the value of x to 0 is made before execution. In contrast, the

single variable elastic predicates use summary statistics of the values given to variable x to

create partitions that cluster together values which are a similar distance and direction from the

mean. For the variable x with mean μx and standard deviation σx, the elastic single variables

predicates created are: (x > μx + σx), (x ≥ μx + σx), (μx + σx ≥ x > μx - σx), (μx + σx ≥ x ≥ μx - σx),

(μx + σx > x ≥ μx - σx), and (x ≤ μx - σx), (x < μx - σx). These predicates reflect values of variable x

that are well above their normal value, within their normal range of values and well below their

normal value.

2.3.2 Scalar Pair Predicates
Scalar pair predicates capture the important relationships between two variables that elude

single variable predicates. The most basic scalar pair variables are static. Static scalar pair

predicates are employed to partition the difference between a pair of variables, x and y, around

the number zero: (x - y > 0), (x - y ≥ 0), (x - y = 0) (x - y ≤ 0) and (x - y < 0). These scalar pairs

predicates are referred to as static because the decision to compare the difference between x and

y to 0 is made before execution. In contrast, the scalar pairs elastic predicates use summary

statistics of the difference between x and y to create partitions that cluster together values which

are a similar distance and direction from the mean. For the pair of variables x and y with mean

difference μx-y and standard deviation σx-y, the elastic scalar pairs predicates created are: (x - y >

μx-y + σx-y), (x - y ≥ μx-y + σx-y), (μx-y + σx-y > x - y > μx-y – σx-y ,), (μx-y + σx-y ≥ x - y > μx-y – σx-y), (μx-y

+ σx-y > x - y ≥ μx-y – σx-y), (μx-y + σx-y ≥ x - y ≥ μx-y – σx-y), (x-y ≤ μx-y – σx-y) and (x-y < μx-y – σx-y).

These predicates reflect differences between the values of x and y that are well above the normal

value, within the normal range of values and well below the normal value.

2.3.3 Compound Predicates
Compound predicates reflect any combination of single variable and scalar pair predicates that

can be composed using the logical operators ∧ (and) and ∨ (or). For any two predicates P and

Q, two compound predicates are tested: (1) the conjunction of the predicates (P ∧ Q) and (2) the

disjunction of the predicates (P ∨ Q). Once created a compound predicate can be combined with

another compound predicate. Previous work in the field of software engineering has shown that

there is not a significant benefit to combining compound predicates together more than three

times [22].

3. Enhanced Trace Validation with the V&V Calculator

In order to conduct a trace validation of an unexpected output from an ABM, the SME must

identify the following: (1) the simulation output of interest; (2) the expected range of values for

the output of interest; and (3) the agent and model characteristics relevant to the output of

interest. These agent and model characteristics of interest reflect the entities within the

simulation to trace during execution. These characteristics include any pieces of information

relevant to the agents or the model that the SME thinks are directly dependent upon or that

directly affect the output of interest. Next, the simulation must then be instrumented so that each

time it is run it creates a trace of the characteristics of interest and records the value of the

simulation output. Finally, the simulation is executed across a range of input conditions where

the SME anticipates output within the expected range.

It is important to note that these steps are not unique to our trace validation approach. Instead,

these steps are required by trace validation. In what follows we describe how our approach,

realized in the V&V Calculator, facilitates SME analysis of the traces by quantifying extent to

which traced agent and the model characteristics cause outputs falling outside of the specified

range.

3.1 Using the V&V Calculator

The traces produced by the simulation are aggregated together for use in the V&V Calculator.

Once the traces are loaded into the calculator, the calculator notifies the SME if the output of

each collected trace is within the specified range. If this is the case, the trace validation is over;

there are no unexpected outputs for the simulation and the simulation output is considered valid

under the input conditions that generated the traces [5, 10, 12].

However, the trace validation process continues if any output that is produced falls outside of the

specified range. Recall, an output that falls outside the specified range does not necessarily

reflect an invalid simulation exhibiting an error. Instead, it may reflect output and lower-level

interactions that are valid but were not expected by the SME [4]. The V&V calculator facilitates

the collection of insight need for SMEs to make this determination.

SMEs pursue insight into agent or model characteristics from the calculator by searching among

the traced agent and model characteristics. The goal is to identify those with the strongest effect

on the simulation outputs that fall outside the specified range. The search is parameterized by the

SMEs specifying the types of statistical debugging predicates among the traced agent or model

characteristics that they would like to explore. The specification includes the choice to query

single variable, scalar pair, or both types of predicates, and if the predicates will be static, elastic,

or compound. SMEs can also specify to exclude any individual or combinations entities of

interest from the search.

The interface of the V&V Calculator is shown in Figure 1. In Figure 1 the user has loaded a

single file containing all the aggregated traces using the “Upload CSV File Here” button.

Furthermore, they have specified the valid range of values for the output using the “Specify

Value Range for Output” slider. The calculator has already informed the SME that at least one of

the traces produced unexpected output. As a result, the SME expressed predicates of interest for

querying using the “Pred. Types” and “Pred. Specificity” checkboxes. The only action remaining

before the SME receives analysis to facilitate insight is to click the “Click Here To Generate &

Score Predicates” button.

The result of clicking this button is a list of the queried predicates in descending order of

suspiciousness. Within the list, each predicate is a condition featuring at least one (often several)

agent and model characteristics included in the trace. The application of using statistical

debugging predicates to capture different conditions related to any traced model and agent

characteristics is the novel contribution of our work. Specifically, it enables the extent to which

each generated condition featuring at least one agent or model characteristic causes the

unexpected output to be quantified via the suspiciousness measure.

Figure 1. User interface of the V&V Calculator after loading collected traces into the tool.

Recall, the suspiciousness measure reflects two metrics that quantify the extent to which the

predicate causes output outside the specified range. These metrics are: (1) correlation – the

likelihood given the predicate that output outside of the specified range occurs and (2) coverage

– the likelihood given output outside the specified range that the predicate occurs. Ranking the

SME configured predicates in descending order of suspiciousness provides an effective interface

for analysis that enables SME insight into the causes of unexpected output. To elucidate the

utility of our proposed approach we apply the V&V Calculator to an ABM of epidemic disease

spread.

3.2 Example: Epidemic Disease Spread

An example helps elucidate the application and benefits of our enhanced approach to trace

validation with the V&V Calculator. Epidemics have been modeled mathematically for over a

century. Traditionally, in epidemiology the spread of a SIER infectious disease is described by a

system of differential equations that determine the fractions of the population that are susceptible

(S), exposed (E), infectious (I), and recovered (R), respectively. Individuals are susceptible, then

exposed (in the latent period), then infectious, and then recover with permanent immunity [23].

Recently, researchers have begun to study the spread of SEIR epidemics in a fundamentally

different way using agent-based models [24]. Here agents interact on a 2-D landscape and

infectious agents search for susceptible agents within a specified radius of their current position

and push the infection onto the susceptible population within the radius with a certain

probability. Agents travel to work and return home at specified time steps and birth new agents

onto the landscape at a specified birth rate. For a number of parameterizations of the ABM the

curves (susceptible, exposed, infected, and removed) are a qualitative match to the established

differential equation model. Figure 2(a) and Figure 2(b) show these qualitative matches [25].

Upload CSV File Here

Click Here To Generate & Score Predicates

400 825

Pred. Types:

Pred. Specificity:

Specif y Value
Range f or Out put

Configure Predicates

Figure 2. Epidemic graphs of susceptible, exposed, infected, and removed population curves from a differential

equation model (a) and an Agent-based Model (b).

Given the similarity in curves between Figure 2(a) and Figure 2(b), instances where the agent-

based model’s prediction drastically differs from the differential equation based model’s

prediction should be validated. The SME needs to understand why the predictions are different

and the SME needs to determine the validity of the interactions within the model that cause those

predictions. One such circumstance occurs when all of the parameters in both models remain the

same but the size of the population of interest is increased from 100 to 1,000 as shown in Figure

3. The difference in the prediction of the disease spread of the two models is shown in Figure

3(a) and Figure 3(b).

To determine if the ABM-generated predictions that drastically differ from differential equation

model predictions are valid, we apply our enhanced approach to trace validation. First, we

identify our output of interest: the mean standard deviation of the four epidemic curves (S, E, I,

and R) produced by the agent-based model from the established differential based curves over

100 days. Then, we specify the valid range for this output: any mean deviation < 5% of the

population will be considered a qualitative match of the differential equation model while any

deviation > 5 % of the population deviation will not be considered a qualitative match and not an

expected output. For context, the average mean standard deviation of the curves shown in Figure

2(b) is 1.5 % while the average mean standard deviation of the curves shown in Figure 3(b) is

14.7 % of the population.

Next, we trace the value of the population size and four characteristics of each agent: (1) stay -

the number of days thus far the agent has stayed at home and not travel to work due to infection;

(2) othersInfed - the number of other agents thus far that have been infected by the agent; (3)

expDays - the number of days thus far the agent has spent in the exposed state (E); and (4)

infDays - the number of days thus far that the agent has spent in the infected state (I). Then, we

run the simulation under different parameterizations including the one shown in figures 2(b) and

3(b). Finally, we collect the traces we load them into the calculator, specify the predicates we

want to generate, and score them for suspiciousness.

The most suspicious predicate for the unexpected model predictions, like the one shown in

Figure 3(b), is: othersInfed > μothersInfed + σothersInfed AND population > μpopulation + σpopulation. This

compound elastic predicate shows that the most drastic differences in the prediction of the agent-

based model are due to a significantly higher rate of new infections per individual occurring

when the population size is increased. Based on this analysis the SME can determine that the

higher rate of new infections per individual is caused by more interactions among the agents due

to a denser ABM landscape. Given this explanation it is up to the SME to determine if these

interactions were intended and if the prediction is valid. However, the existence of the

explanation and the insight that it provides is due to the V&V Calculator’s ability to generate,

quantify, and rank predicates containing traced agent and model characteristics. Such insight

would be challenging to capture without the use of (1) predicates to capture these conditions, and

(2) the suspiciousness measure to quantify and rank the conditions. Next, we evaluate the

effectiveness of our approach using five different published agent-based models each exhibiting

an unexpected output. We compare the effectiveness of our approach to enhanced trace-

validation to several other candidate approaches that we have implemented.

Figure 3. Epidemic graphs of susceptible, exposed, infected, and removed population curves from a differential

equation model (a) and an Agent-based Model (b) when using 1,000 people.

4. Evaluation

4.1 Experimental Setup

The utility of a trace validation approach is determined through experimental evaluation. The

five different agent-based models and the unexpected output used to conduct our evaluation for

each are listed in Table 1. Also listed in Table 1 are the agent and model characteristics traced

for each simulation and the subset of those characteristics that cause the unexpected output.

These models because they reflect a broad spectrum of established agent-based examples. The

traced characteristics and outputs are chosen for each ABM because they reflect published

examples of behaviors that at one time did not match the expectation of SMEs. The

characteristics responsible for causing the unexpected output of each simulation reflect our

review of published explanations of the model’s output. For each of the subject simulations we

construct an experimental design by applying Latin hypercube sampling with 10,000 samples to

the simulation’s parameters. A Latin hypercube design yields a sample where each of the

dimensions of each variable is divided into equal levels and that there is only one point (i.e.

sample) at each level. We use an optimized random procedure to determine the point locations so

that good coverage of the design space is ensured as recommended by Cioppa and Lucas [26].

Overall, this setup ensures that our experiments are objective and the evaluation is not biased

towards favoring our approach.

Table 1. Subject simulations used in the evaluation of the enhanced trace validation process.

Name Characteristics Traced Unexpected Output Characteristics

Responsible

Boids Height, Width, Separation,

Cohesion, Alignment,

Orientation Angle,

Velocity, Acceleration

Flocking Index > n/2 Separation, Cohesion

Alignment

Schelling Height, Width, Tolerance,

of Neighbors

Mean Similarity < 60% # of Neighbors,

Tolerance

Obesity Age, Height, BMR, BMI,

Calories Per Week, Life

Expectancy

Max Weight > 600 Age, Life Expectancy

Self-

Driven

Particle

Height, Width, Interaction

Radius, Random Term,

Orientation Angle

of clusters > n/2 Interaction Radius,

Random Term

Epidemic

Disease

Spread

Population, Stay,

OthersInfed, expDays,

infDays

Avg. Std. Dev. > 5 Population, Others

Infected

Boids

Boids models the flight patterns of birds on a two-dimensional grid [27]. Height and width

parameters control the area of the grid. Within the simulation, three parameters control the

behavior of each bird: separation; alignment; and cohesion. Each parameter reflects the mean

value of a normal distribution and each boid is instantiated by sampling values from these

distributions. The degree of separation controls the extent to which the birds avoid crowding

each other. Alignment controls the degree to which each bird steers to the average head of the

other birds. The cohesion parameter controls the amount that each bird moves toward the

average position of the other birds [28—30].

The output of the simulation is the mean flocking index of the birds [31]. Under most conditions

the model produces a low flocking index reflecting birds flying along independent paths.

However, under certain conditions the birds convene into a single flock flying along one path

creating a high flocking index. This characteristic of the simulation has made it an exemplar of

designing decentralized systems through an agent-based paradigm.

In the evaluation we track the height and width of the canvas along with the separation,

alignment, and cohesion of each bird. Additionally, the trace tracks the following characteristics

of each bird over time: the orientation angle of the bird, the current speed of the bird, and the

change in acceleration from the previous time step of the bird. A trace producing an unexpected

output occurs if there is a mean flocking index greater than half the size of the population

occurring at any point after 100 time steps in the simulation. This implementation is described in

Quera et al. [31].

We chose this output because most observers do not expect to observe the boids flocking since

there is no centralized direction given to the boids. As a result when one first observes this

behavior, an explanation is needed to ensure the model is valid [32].

Schelling’s Model of Segregation

The Schelling model of segregation explores how the decisions of individuals to move based on

their relative positions to their neighbors can lead to segregation. In the model, each agent

belongs to one of two groups and aims to reside within a neighborhood populated by similar

agents. Agents in the simulation continually relocate based on their neighbors until achieving a

steady state. The degree of segregation of the steady state is referred to as the mean similarity.

This reflects the average percentage of similar individuals within a neighborhood during the

steady state. A steady state is achieved when the mean similarity of each neighborhood in the

simulation does not increase or decrease by 1% in ten consecutive time steps. Under most

parameterizations, a mean similarity of at least 75% occurs by the time that the simulation

reaches a steady state. This implementation is described in Schelling [33].

How and when agents move are controlled by the following conditions: (1) the dimensions of the

urban area; (2) agent-density of the urban area; and (3) the extent of each agent’s tolerance – the

agent’s willingness to reside in a neighborhood with dissimilar agents [34, 35]. The tolerance of

each agent is chosen from a uniform distribution with a specified mean. Along with the height

and width of the canvas and the tolerance of an agent, the trace also tracks the number of

neighbors the agent has over time. A trace producing an unexpected output occurs if the mean

similarity is less than 60% after a steady state is achieved.

We chose this output because given the ability of agents to move to areas with similar neighbors,

most observers expect segregation. As a result when one first observes an output reflecting

integrated neighborhoods an explanation is needed to ensure the model is valid [36].

Obesity ABM

The agent-based obesity model included in our evaluation shows how the availability of different

restaurant choices in an area affects obesity. The simulation contains four types of entities:

people, homes, restaurants, and workplaces. Inputs include the number of people, the eating

habits of the people, the starting age and weight levels of the people, the number of workplaces,

the number of restaurants, and the types of restaurants. Everyday each person eats three meals,

which are obtained from the restaurants. Each meal contributes a number of calories to the

individual based on the restaurant’s type. People choose restaurants based on their current

location. At the end of every week, each person’s weight adjusts based on the number of calories

that they consumed during the week compared against the number of calories that they needed to

maintain their weight level. Calorie levels are reset each week and the obesity of each individual

is tracked over time. Agents are removed from the population as a stochastic function of their life

expectancy, which is influenced by their level of obesity. This implementation is described in

[37].

The trace tracks six characteristics of each agent in the simulation over time: (1) the age of the

agent; (2) the height of the agent; (3) the BMR (basal metabolic rate) of the agent, which

provides the number of calories that the agent needs each day to maintain its current weight; (4)

the BMI (body mass index) of the agent, which is a screening measure for obesity; (5) the

average number of calories that the agent consumes in a week; and (6) the life expectancy of the

agent given the previously mentioned variables. The output of interest in the model is the

maximum weight in pounds of any living person in the population. A trace producing an

unexpected output features at least one person whose maximum weight is more than 700 pounds.

We chose this output because it reflects a liberal estimate for the maximum weight of an agent.

When agents are produced that exceed 700 pounds the model is invalid. Explanation is required

so the model can be modified to ensure that 700-pound agents are not produced [21].

Self-Driven Particle Model

In the self-driven particle model agents interact on a 2-dimensional torus according to a simple

rule. Particles move at a constant speed, and their interaction radius and a random term control

their orientation. The interaction radius reflects the maximum distance a neighbor must be from a

particle to influence their orientation. The random term reflects the degrees of randomness added

to the average orientation of all particles within the interaction radius [38]. The implementation

of this model is provided in Wieman et al. [39].

Under most parameterizations particles form clusters. However, under some parameterizations

the particles exhibit a different behavior. Rather than joining a distinct cluster, each particle

roams in a random walk. This behavior is called Spontaneous Symmetry Breaking [40].

The trace tracks the height and width of the torus, the interaction radius, and the random term

employed by each agent along with the orientation angle of the agent over time. Any simulation

run where there are more clusters than half the number of agents in the population reflects

Spontaneous Symmetry Breaking and is considered an unexpected output.

We chose this output because given the influence of neighboring particles on one another most

observers expect coordinated movement among the particles. As a result when one first observes

the particles moving independently along random walks an explanation is needed to ensure the

model is valid [41].

Epidemic Disease Spread ABM

The epidemic disease spread model, its implementation, unexpected output, and agent entities

included are the same as those described in the example presented in Section 3.2. Recall, under

many parameterizations the ABM produces a prediction that matches the differential equation

model of epidemic disease spread. However, under certain parameterizations the predictions of

the two models drastically differ. In these cases the output of the ABM needs to be explained to

understand why it differs from the differential equation model and under what conditions it is

valid [25].

4.2 Competing Approaches

Four different versions of our enhanced trace validation approach are featured in the evaluation:

Random-Walk (RW), Correlation-Only (Corr), Coverage-Only (Cov) and Suspiciousness (Susp).

Each approach generates the same predicates for each simulation (static, elastic, single variable,

scalar pairs and compound predicates). However, the versions differ based on the measure they

use to rank predicates related to an unexpected output. In what follows, we summarize the

similarities and the differences of the ranking strategies.

Random-Walk (RW)

The RW version of our enhanced trace validation approach puts generated predicates reflecting

the traced agent and model characteristics in a random order and presents them to the SME. It is

included within the evaluation as a baseline, which any version of our approach must

outperform.

Correlation-Only (Corr)

The Corr version of our enhanced trace validation approach uses the correlation measure for

predicates described in Equation 1. Recall, this measure reflects the likelihood that an execution

trace exhibiting the predicate featuring the traced agent and model characteristic(s) will produce

outputs outside of the specified range. Predicates from the Corr version are ranked in descending

order of correlation and presented to the SME. This version is included in the evaluation to

determine the extent to which using correlation alone enables effective trace validation.

Coverage-Only (Cov)

The Cov version of our enhanced trace validation approach uses the coverage measure for

predicates described in Equation 2. Recall, this measure reflects the likelihood that an execution

trace producing output outside of the specified range will exhibit the predicate featuring the

traced agent and model characteristic(s). Predicates from the Cov version are ranked in

descending order of coverage and presented to the SME. This version is included in the

evaluation to determine the extent to which using coverage alone enables effective trace

validation.

Suspiciousness (Susp)

The Susp version of our enhanced trace validation approach combines the correlation and

coverage measure for predicates using the harmonic mean. This measure is described in Equation

3. Predicates from the Susp version are ranked in descending order of suspiciousness and

presented to the SME. This is the version of our enhanced trace validation approach that is

proposed and described in the preceding sections. It is included in the evaluation to determine the

extent to which using a measure, which factors in correlation and coverage alone enables

superior trace validation.

4.3 Effectiveness

Given a ranked set of predicates, Cost measures the percentage of predicates a developer must

examine before encountering a predicate which: (1) includes all of the agent and model

characteristics causing the unexpected output; and (2) includes only the agent and model

characteristics that cause the unexpected output.

If there are ties, it is assumed that the developer must examine all of the tied predicates. For

example, if there are n predicates scored by an approach and all n predicates have the same

score, it is assumed that the developer must examine all n predicates. A lower Cost is preferable

because it means that fewer of the predicates must be considered by the SME before the

characteristics causing the unexpected output are found.

It is important to note that this evaluation strategy does not consider the relationship among the

agent and model characteristics causing the unexpected output. This is a conscious choice made

to reflect the variability surrounding how SMEs gain insight into unexpected outputs.

Reasonable SMEs may disagree as to how an ideal predicate would capture the relationship

among the agent and model characteristics creating the unexpected output. We avoid these

concerns by employing an evaluation metric that does not take this into account.

The effectiveness results of employing the approaches included in the evaluation for the subject

simulations are shown in Table 2. Each row in Table 2 shows a Cost range, and the number (and

percentage) of subjects for each approach that incur the specified Cost. Figure 4 provides a

graphical view of this data, where the x-axis represents the lower bound of each Cost range and

the y-axis represents the percentage of subjects where a Cost less than or equal to the upper

bound is incurred. This presentation of data follows the established convention in the statistical

debugging community [42].

Table 2. Number and (percentage) of predicates that need to be searched through by the SME

within the ranked list in each score range for all approaches.

Cost Range RW Corr Cov Susp

< 1 % 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

< 2 % 0 (0 %) 1 (20 %) 1 (20 %) 1 (20 %)

< 4 % 0 (0 %) 1 (20 %) 1 (20 %) 2 (40 %)

< 8 % 0 (0 %) 2 (40 %) 2 (40 %) 3 (60 %)

< 16 % 1 (20 %) 3 (60 %) 3 (60 %) 5 (100%)

< 32 % 2 (40 %) 4 (80 %) 5 (100%) 5 (100%)

< 64 % 3 (60 %) 4 (80 %) 5 (100%) 5 (100%)

≤100 % 5 (100%) 5 (100%) 5 (100%) 5 (100%)

The Susp version of our approach outperforms each of the other alternatives in our evaluation.

For each of the five subject simulations it lists the agent and/or model characteristics causing the

unexpected output in the top 10% of the ranked predicates. Furthermore, for three of the five

simulations it ranks the causing characteristics in the top 4% of the ranked predicates. In what

follows, we discuss the difference between the performance of Susp and each of the other

versions in more detail.

Susp Vs. RW

The Susp version of our evaluation approach significantly outperforms RW. This is expected.

Recall, RW is included in the evaluation as a baseline that any version of our approach must

exceed. However, the extent to which all of the other versions outperform RW is noteworthy. No

other approach needed to examine more than 60% of the generated predicates for a subject

ABM, while the RW needed to examine this many predicates for two different subject

simulations (Boids and Self-Driven Particle).

Figure 4. Evaluation of the effectiveness. Higher and further to the left is better.

Susp Vs. Corr

For two of the five subject simulations (Obesity and Epidemic) the Corr version of our approach

performs extremely well. It ranks the agent and/or model characteristics causing the unexpected

output of these simulations within the top 8% of the generated predicates. However, for the other

three simulations its inability to factor in the number of times that an agent or any model

characteristic appears in traces that produce unexpected output hampers its effectiveness. In each

of these cases Corr over-ranks elastic predicates that only occur in one or two traces producing

the unexpected output. These predicates do not capture the different ways in which the

unexpected output can be produced. As a result, the Corr version of the approach pushes down

more useful predicates that cover all the agent and/or model characteristics causing the

unexpected output. The Susp version does not fall victim to this issue because it includes a

measure that quantifies how often a trace, which produces unexpected output, includes each

predicate. This ensures that only the agent and model characteristics that occur frequently and

exclusively in traces that produce unexpected output are ranked at the top of the list.

Susp Vs. Cov

The Cov version of our approach performs well. It ranks the agent and model characteristics

causing the unexpected output of four of the five simulations within the top 16% of the list.

Furthermore, for the final simulation it ranks the predicate containing any agent or model

characteristics causing the unexpected output in the top 32% of the list. Ultimately, what reduces

the effectiveness of the Cov version is that it does not distinguish between a predicate in a trace

that does produce expected output versus a predicate in a trace that does not. The result is an

approach that ranks predicates containing the agent and model characteristics, which appear in

all traces the same as predicates containing the agent and model characteristics that only appear

in traces that produce unexpected output. The Susp version does not fall victim to this issue

because it includes a measure that quantifies how often a predicate results in unexpected output.

This ensures that only the agent and/or model characteristics that occur frequently and

exclusively in traces that produce unexpected output are ranked at the top of the list.

Susp Vs. Others

The suspiciousness measure used in Susp facilitates SME inspection and analysis of ABM traces.

This capability of Susp is similar to the Geamas Virtual Laboratory (GLV) tool [8] and the Trace

Validation Interface (TVI) proposed by [18]. However, the two approaches are orthogonal. GLV

and TVI facilitate SME inspection of trace data by efficiently creating on-demand graphics. In

contrast, Susp employs automated analysis on the collected data to rank conditions possibly

causing the unexpected output.

These different capabilities make the approaches hard to compare against one another. It is

possible that some SMEs could use GLV or TVI to produce a graphic that provided an

explanation of an unexpected output faster than if they used Susp to rank conditions causing the

output. However, it is also possible that another SME could choose to use GLV or TVI to create

different graphics and as a result of this choice would be unable to explain the unexpected output

at all. In future work we will explore how the visualization capabilities provided in GLV and

TVI can be incorporated into Susp to improve its effectiveness.

5. Discussion

5.1 Validity

Internal, external, and construct validity threats affect our evaluation. Internal validity threats

arise when factors affect the dependent variables without evaluators’ knowledge. It is possible

that some implementation flaws could have affected the evaluation results. However, we

conducted a code review on each of the trace validation approaches we implemented and the

source code of the subject agent-based models were obtained from supplemental materials of

published research. Threats to external validity occur when the results of our evaluation cannot

be generalized. Although we performed our evaluations on five agent-based models and three

different fault localization approaches, we cannot claim that the effectiveness observed in our

evaluation can be generalized to other unexpected outputs in other agent-based models. Threats

to construct validity concern the appropriateness of the metrics used in our evaluation. More

studies into how SMEs gain insight from collected traces need to be performed. However,

currently we are not aware of any evaluations. As a result, our evaluation and effectiveness

metrics serve as a starting point for other researchers to improve upon.

5.2 Limitations

It is important to note that all of the causes of unexpected output in our evaluation reflect agent

and model characteristics that are included in traces. A notable limitation of our work is that it is

incapable of identifying any characteristic that causes an unexpected output, which is not

included within the traces. Furthermore, our evaluation only includes models exhibiting a single

type of unexpected output. This is relatively uncommon. During the initial stages of

development, models often feature multiple types of unexpected outputs. Adapting our enhanced

validation approach so that it is effective for models with multiple types of unexpected outputs is

an opportunity for future work.

6. Conclusion and Future Work

Our goal is to develop an effective and structured approach for Trace Validation to facilitate

SMEs insight into the causes of unexpected outputs. As a means to this end, we developed the

V&V Calculator, which applies statistical debugging to enhance trace validation. Specifically, it

enables SMEs to aggregate collected traces of agent and/or model characteristics together and

quantifies the extent to which combinations of those characteristics cause an unexpected output.

Our approach is evaluated using against several alternatives we implemented and is shown to be

the most effective version for five different agent-based models each exhibiting an unexpected

output. Ultimately, these contributions further the state of the art in trace validation for SMEs

tasked with V&V. In the future we will explore how SMEs gain insight from the V&V

Calculator and how to adapt its analysis to simulations with multiple types of unexpected output.

Notes

The V&V Calculator is freely available on GitHub at

https://github.com/rossgore/IVandVLevelChecker/

References

1. Gilbert N. Agent-Based Models. SAGE Publications. Thousand Oaks, CA, USA: SAGE

Publications, 2008.

2. Bonabeau E. Agent-based modeling: Methods and techniques for simulating human systems.

PNAS 2002; 99(3): 7280–7287.

3. Macal CM, North MJ. Tutorial on agent-based modelling and simulation. J Simul 2010; 4(3):

151–162.

4. Takadama K, Kawai T, Koyama Y. Micro- and Macro-Level Validation in Agent-Based

Simulation: Reproduction of Human-Like Behaviors and Thinking in a Sequential Bargaining

Game. J Artif Soc Soc Simul 2008; 11(2).

5. Balci O. Verification, Validation and Testing. In: Banks J, editor. Handbook of simulation:

Principles, methodology, advances, applications, and practice. Hoboken, NJ: John Wiley &

Sons, Inc., 1998. pp.335–393.

6. Bharathy GK, Silverman BG. Validating agent based social systems models. In: Proceedings

of the Winter Simulation Conference (eds B Johansson, S Jain, and J Montoya-Torres),

Baltimore, MD, 2010, pp.441–453. IEEE.

7. Sargent RG. Verifying and validating simulation models. In: Proceedings of the Winter

Simulation Conference (eds A Tolk, SY Diallo, IO Ryzhov, L Yilmaz, SJ Buckley, JA Miller).

Savannah, GA, 2014, pp.118–131. IEEE.

8. Xiang X, Kennedy R, Madey G, Cabannis S. Verification and validation of agent-based

scientific simulation models. ADS’05. San Diego, Ca, 2005, pp.47–55. SCS.

9. Gore R, Reynolds Jr. PF, Kamensky D. Statistical debugging with elastic predicates. In:

Proceedings of the 26th IEEE/ACM International Conference on Automated Software

Engineering, 2011, pp.492–495. IEEE.

10. Whitner RB, Balci O. Guidelines For Selecting And Using Simulation Model Verification

Techniques. In: Proceedings of the Winter Simulation Conference (eds E MacNair, K

Musselman, and P Heidelberger). Washington, D.C., 1989, pp.559–568. IEEE.

11. Sargent RG. An overview of verification and validation of simulation models. In:

Proceedings of the Winter Simulation Conference (eds A Thesen, H Grant, and WD Kelton).

New York, NY, 1987. pp.33–39. ACM.

12. Sargent RG. Verification, validation and accreditation of simulation models. In: Proceedings

of the Winter Simulation Conference (eds P Fishwick, K Kang, J Joines, and R Barton). Orlando,

FL, 2000. pp.50–59. SCS.

13. North MJ, Macal CM. Managing Business Complexity: Discovering Strategic Solutions with

Agent-Based Modeling and Simulation. New York, NY: Oxford University Press, 2007.

14. Windrum P, Fagiolo G, Moneta A. Empirical Validation of Agent-Based Models:

Alternatives and Prospects. J Artif Soc Soc Simul 2007; 10(2).

15. Bagni R, Berchi R, Cariello P. A Comparison of Simulation Models Applied to Epidemics. J

Artif Soc Soc Simul 2002; 5(3).

16. Xu C, He HS, Hu Y, Chang Y, Li X, Bu R. Latin hypercube sampling and geostatistical

modeling of spatial uncertainty in a spatially explicit forest landscape model simulation. Ecol

Modell 2005; 185(2-4): 255–69.

17. Epstein JM, Axtell RL. Growing artificial societies: social science from the bottom up.

Washington D.C., USA: Brookings Institution Press, 1996.

18. Courdier R, Guerrin F, Andriamasinoro FH, Paillat J-M. Agent-based simulation of complex

systems: Application to collective management of animal wastes. J Artif Soc Soc Simul 2002;

5(3).

19. Liblit B, Naik M, Zheng AX, Aiken A, Jordan MI. Scalable statistical bug isolation. ACM

SIGPLAN Not 2005 ;40(6): 15.

20. Gore R, Diallo S. The need for usable formal methods in verification and validation. In:

Proceedings of the Winter Simulation Conference (eds R Pasupathy, S Kim, A Tolk, R Hill, ME

Kuhl). Washington D.C., 2013. pp.1257–1268. IEEE.

21. Gore R, Reynolds Jr. PF, Kamensky D, Diallo S, Padilla J. Statistical Debugging for

Simulations. ACM Trans Model Comput Simul 2015; 25(3): 1–26.

22. Nainar PA, Chen T, Rosin J, Liblit B. Statistical debugging using compound boolean

predicates. In: Proceedings of the 2007 international symposium on Software testing and

analysis. New York, NY, 2007. pp.5–15. ACM.

23. Li MY, Muldowney JS. Global stability for the SEIR model in epidemiology. Math Biosci

1995; 125(2): 155–64.

24. Dunham JB. An agent-based spatially explicit epidemiological model in MASON. J Artif Soc

Soc Simul 2005; 9(1): 231–44.

25. Gore R, Reynolds PF. Applying causal inference to understand emergent behavior. In:

Proceedings of the Winter Simulation Conference (eds S Mason, R Hill, L Monch, O Rose).

Miami, FL, 2008. pp.712–721. ACM.

26. Cioppa TM, Lucas TW. Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes.

Technometrics 2007; 49(1): 45–55.

27. Reynolds CW. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH

Comput Graph 1987; 21(4): 25–34.

28. Gilbert N. Agent-based social simulation: dealing with complexity. Complex Syst Netw

Excell 2004; 9(25): 1–14.

29. Epstein JM. Generative Social Science: Studies in Agent-Based Computational Modeling.

Princeton, NJ: Princeton University Press, 2006.

30. Salge C, Polani D. Digested information as an information theoretic motivation for social

interaction. J Artif Soc Soc Simul 2011; 14(1): 5.

31. Quera V, Herrando S, Beltran FS, Salas L, Miñano M. An index for quantifying flocking

behavior. Percept Mot Skills 2007; 105(3): 977–87.

32. Bajec IL, Zimic N, Mraz M. The computational beauty of flocking: boids revisited. Math

Comput Model Dyn Syst 2007; 13(4): 331–47.

33. Schelling TC. Micromotives and macrobehavior. New York, NY: WW Norton & Company,

2006.

34. Hatna E, Benenson I. The schelling model of ethnic residential dynamics: Beyond the

integrated - segregated dichotomy of patterns. J Artif Soc Soc Simul 2012; 15(1).

35. Hegselmann R. Thomas C. schelling and the computer: Some notes on schelling’s essay “on

letting a computer help with the work.” J Artif Soc Soc Simul 2012; 15(4).

36. Rossiter S, Noble J, Bell KRW. Social Simulations: Improving Interdisciplinary

Understanding of Scientific Positioning and Validity. J Artif Soc Soc Simul 2010; 13(1).

37. Hammond RA. Complex systems modeling for obesity research. Prev Chronic Dis 2009;

6(3): 1–10.

38. Nishinari K, Sugawara K, Kazama T, Schadschneider A, Chowdhury D. Modelling of self-

driven particles: Foraging ants and pedestrians. Phys A Stat Mech its Appl 2006; 372(1): 132–41.

39. Wieman CE, Adams WK, Perkins KK. PhET: simulations that enhance learning. Science

2008; 322(5902): 682–3.

40. Vicsek T, Czirk A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a

system of self-driven particles. Phys Rev Lett 1995; 75(6): 1226–9.

41. Huepe C, Aldana M. Intermittency and clustering in a system of self-driven particles. Phys

Rev Lett 2004; 92(16): 1–4.

42. Jones A, Harrold MJ. Empirical evaluation of the tarantula automatic fault-localization

technique. In: Proceedings of the 20th IEEE/ACM international Conference on Automated

software engineering. New York, NY, 2005. pp.273–282. ACM.

