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Abstract 

The verification and validation (V&V) of Agent-based Models (ABMs) is challenging. The 

underlying structure of the model and the agents can change over time. Furthermore, the 

theoretical context of the model is often very different from established models of the same 

phenomenon. In an effort to overcome these issues, Trace Validation is becoming a common 

V&V mechanism within the Agent-based Modeling community. In Trace Validation, 

characteristics of agents and the model are tracked over time and then analyzed by subject matter 

experts (SMEs) to gain insight into unexpected and potentially invalid output. Here, we present 

our tool, the V&V Calculator, which applies predicates employed in the field of software 

engineering. The result is a structured trace validation approach with quantifiable measures that 

facilitates SME exploration and insight into the causes of unexpected output within ABMs. 
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1. Introduction 

The Agent-based Modeling paradigm allows for the direct representation of individual entities 

and their interactions within an environment to explore system level behaviors [1]. A plethora of 

work has shown that ABM outcomes can provide novel insight into the phenomenon that 

modelers did not originally anticipate [1—3]. Furthermore, ABMs also can include different 

stochastic processes and multiple options for communication. These features create opportunities 

for implementation errors that also lead to outputs that modelers did not originally anticipate [4]. 
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Given these inherent complexities, it is important for unexpected ABM outputs to undergo 

validation. 

Trace validation is a means to this end. Trace validation entails periodically collecting data from 

a simulation during execution (i.e. tracing) in a manner that facilitates the explanation of what 

agent or model characteristics cause the unexpected output [5]. Specifically, once a SME has 

observed an unexpected output and decided to employ trace validation, the SME must (1) run the 

simulation to create traces that generate expected and unexpected output, (2) analyze the traces 

to find the characteristics of the agents and the model that cause the unexpected output, and (3) 

determine if the output reflects a valid but previous unanticipated output or an invalid output 

resulting from an error [6, 7]. 

The chief drawback of trace validation is that the creation of traces results in large volumes of 

data that is difficult to analyze and too time-consuming for SMEs to interpret [5, 8]. Our 

approach for enhanced trace validation directly addresses this challenge by providing a tool for 

SMEs to automatically search for and quantify the extent to which traced agent and model 

characteristics within the ABM cause the unexpected output [9].  

The novelty of our approach is the application of statistical debugging. Statistical debugging is 

an area of research within the field of computer science focused on the automatic localization of 

faults in software. We apply the same principles that localize faults in software to analyze and 

quantify the extent to which an agent and the model characteristic included in a trace cause an 

unexpected output. We automate this analysis and provide a graphical interface for SMEs to 

query the collected traces. The result is a more efficient and effective mechanism for trace 

validation because the burden of analysis and interpretation for SMEs is reduced. 

The remainder of the paper proceeds as follows. Section 2 provides background information on 

trace validation of ABMs and statistical debugging. Section 3 provides a description of our 

enhanced trace validation approach and how it is realized in a tool called the V&V Calculator. 

Section 4 evaluates the effectiveness of our proposed approach relative to several other versions 

of our tool we implemented. In Section 5, we discuss the validity of evaluation and the 

assumptions and limitations of our work. Finally, we review our contributions and offer direction 

for future work. 

2. Background 

A large number of V&V techniques have been cataloged. These techniques can be classified as 

informal (rely on human reasoning and subjectivity [5]), formal (based on mathematical proofs 

of correctness [5, 10]), static (applied to the simulation’s source code while it is not being 

executed [10]), and dynamic (applied to the simulation during execution under different 

conditions [11, 12]).  



In this paper, we combine two dynamic techniques that utilize simulation data collected during 

execution: (1) trace validation and (2) statistical debugging. In Sections 2.2 and 2.3, we present 

background material and work related to each. However, first we discuss work related to 

construction of ABMs and describe why our approach to enhanced trace validation is 

independent of ABM construction. 

2.1  ABM Construction 

The underlying structure of an ABM can change over time and the theoretical context of the 

model is often very different from established models of the same phenomenon that are 

constructed using other modeling paradigms. ABMs deal with human-like behaviors or human-

like thinking that requires validating both the system level (macro-level) and individual level 

(micro-level components) of the model [4]. To consider an ABM as valid, agent behaviors, 

relationships, and interactions must correctly correspond to the individuals that they represent 

[13]. Windrum et al. [14] identify several challenges with Agent-based Modeling, including the 

lack of an accepted way to build and analyze ABMs that could contribute to the selection of the 

best sensitivity analysis approach to V&V the model. While we do not address the ability to 

build ABMs, our enhanced trace validation approach can be applied to any ABM regardless of 

the approach used for construction as long as the internal characteristics of the agents and the 

model can be traced and the outcome of interest can be quantified as an output. 

2.2 Trace Validation 

Trace validation entails periodically collecting data from a simulation during execution (i.e. 

tracing) in a manner that facilitates the identification of unexpected outputs and the agent or 

model characteristics that lead to these outputs. The traces enhance the internal validity of the 

ABM because they offer a means of comparing multiple simulation replications for the same 

inputs to identify any inconsistencies in the outputs [6, 8]. 

Trace Validation includes various forms of execution testing such as execution monitoring, 

execution profiling, and execution tracing all of which focus on examining micro-level 

occurrences within the model to reveal errors [5]. Traces track the characteristics of the agent 

and the model over time to determine if the logic is correct and the simulation produces 

believable values [11, 15—17]. 

However, traces require manual analysis by the SME, which is can be too burdensome to be 

useful [8]. As a result there have been several efforts to provide SMEs with an interface to 

collect traces. Xiang et al. [8] present a natural organic matter model and a process for 

conducting validation that includes traces, graphs and charts, and model-to-model comparisons. 

They use graphical charts to test if the produced data curves match with the expected normal 

distribution curve and they determine that the traces and the visual methods do increase 

confidence that the model is correct; however, they also state that statistical methods are needed 

to further validate the model. 



Courdier et al. [18] use the Geamas Virtual Laboratory tool to collect traces of a Biomass ABM 

for analyzing the management of animal wastes to explore for unexpected outputs. These traces 

collect either (1) sets of messages exchanged between agents or (2) an accounting of simulation 

execution per agent or group of agents. They conducted an experiment yielding 20,000 traces of 

textual messages exchanged between agents. Visualization tools are applied to inspect these 

traces and identify interactions that lead to successful negotiations between agents. Their 

visualization features filter the traces based on specific groups of agents or specific 

characteristics. However, the Geamas Virtual Laboratory tool does not allow for the visual 

interpretation of traces or graphics for populations in excess of several dozen agents at the 

individual level [18]. 

While both of these approaches assist SMEs in the identification of characteristics within traces 

that cause unexpected outputs, they rely on visual inspection. Visualization can be a powerful 

mechanism to facilitate insight but its effectiveness, especially relative to other visual 

representations, is difficult to evaluate. Our enhanced trace validation method facilitates SME 

insight without visualization by leveraging existing work in the field of statistical debugging. It 

provides an automated means to search across multiple traces and quantify the extent to which 

different combinations of agent and/or model characteristics cause an unexpected output within 

an ABM. Since it does not rely on a visual interpretation for its analysis, it can be easily 

evaluated against other alternatives. 

Next, we review background material needed to understand statistical debugging, then we 

present our enhanced trace validation approach, and finally we objectively evaluate its 

effectiveness. 

2.3 Statistical Debugging 

Our approach to trace validation employs predicates that are used in statistical debuggers. 

Statistical debuggers isolate the causes of software faults using a set of inputs, corresponding 

execution traces, and a labeling of the execution traces as passing or failing [19]. The execution 

traces typically reflect the coverage of individual statements. The debuggers assign 

suspiciousness scores to statements to guide developers in locating faults. Equations 1-3 define 

the suspiciousness of a statement s. 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠          =
# 𝑜𝑓 𝑓𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠

# 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠
                                       (1) 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠              =
# 𝑜𝑓 𝑓𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠

# 𝑜𝑓 𝑓𝑎𝑖𝑙𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑒𝑠
                                       (2) 

𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠𝑠   =
2∗𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠∗𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠+𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠
                                                               (3) 

The correlations of a statement reflects the likelihood of a statement s appearing in a failing 

execution trace, while the coverages of a statement reflects the likelihood that a failing execution 



trace includes statement s. The suspiciousnesss of a statement balances these two rate measures 

via the harmonic mean. Developers examine the statements in decreasing order of suspiciousness 

until the fault is discovered. For the approach to be effective, faulty statements must generally 

have higher suspiciousness scores than non-faulty statements. 

In addition to profiling program statements, most statistical debuggers employ conditional 

propositions, or predicates, to record the values assigned to variables in an execution trace. For 

example, three predicates can be instrumented for every assignment statement in a program to 

test if a value being assigned to a variable is greater than, less than, or equal to zero. The 

suspiciousness of these predicates is calculated using (1) the failing execution traces where the 

predicate is true, (2) the total number of execution traces where the predicate is true, and (3) the 

total number of failing execution traces. 

The addition of predicates (including those that are more complex than the three described 

above) enables statistical debuggers to analyze relationships within and among variable values. 

In theory and in practice this has been shown to improve effectiveness of the statistical 

debugging [9, 19—21]. Next, we describe the different types of predicates and how these 

predicates can be combined. 

2.3 Predicates 

Statistical debuggers employ two different types of predicates (single variable, scalar pairs) at 

two different levels of specificity (static and elastic) to localize faults. The choice of type and the 

specificity-level defines a unique combination of conditions related to the variable(s) that the 

predicate captures. Two or more predicates can also be combined by generating compound 

predicates to gather insight about a variable’s behavior at an additional level of granularity. Here 

we review predicate types, their specificity levels, and describe how they can be combined in a 

compound predicate. 

2.3.1 Single Variable Predicates 
A single variable predicate partitions the set of possible values that can be assigned to a variable 

x. Single variable predicates can be created at two levels of specificity: the static level and the 

elastic level. The most basic single variable predicates are static. Static single variable 

predicates are employed to partition the values for each variable x around the number zero: (x > 

0), (x  ≥ 0), (x = 0), (x ≤ 0) and (x < 0). These single variable predicates are referred to as static 

because the decision to compare the value of x to 0 is made before execution. In contrast, the 

single variable elastic predicates use summary statistics of the values given to variable x to 

create partitions that cluster together values which are a similar distance and direction from the 

mean. For the variable x with mean μx and standard deviation σx, the elastic single variables 

predicates created are: (x > μx + σx), (x  ≥  μx + σx), (μx + σx  ≥  x > μx - σx), (μx + σx  ≥  x  ≥  μx - σx), 

(μx + σx > x  ≥  μx - σx), and (x ≤ μx - σx), (x < μx - σx). These predicates reflect values of variable x 

that are well above their normal value, within their normal range of values and well below their 

normal value. 



2.3.2 Scalar Pair Predicates 
Scalar pair predicates capture the important relationships between two variables that elude 

single variable predicates. The most basic scalar pair variables are static. Static scalar pair 

predicates are employed to partition the difference between a pair of variables, x and y, around 

the number zero: (x - y > 0), (x - y ≥ 0), (x - y = 0) (x - y ≤ 0) and (x - y < 0). These scalar pairs 

predicates are referred to as static because the decision to compare the difference between x and 

y to 0 is made before execution. In contrast, the scalar pairs elastic predicates use summary 

statistics of the difference between x and y to create partitions that cluster together values which 

are a similar distance and direction from the mean. For the pair of variables x and y with mean 

difference μx-y and standard deviation σx-y, the elastic scalar pairs predicates created are: (x - y > 

μx-y + σx-y), (x - y ≥ μx-y + σx-y), (μx-y + σx-y > x - y > μx-y – σx-y , ), (μx-y + σx-y ≥ x - y > μx-y – σx-y ), (μx-y 

+ σx-y > x - y ≥ μx-y – σx-y ), (μx-y + σx-y ≥ x - y ≥ μx-y – σx-y ), (x-y ≤ μx-y – σx-y) and (x-y < μx-y – σx-y). 

These predicates reflect differences between the values of x and y that are well above the normal 

value, within the normal range of values and well below the normal value. 

2.3.3 Compound Predicates 
Compound predicates reflect any combination of single variable and scalar pair predicates that 

can be composed using the logical operators ∧ (and) and ∨ (or). For any two predicates P and 

Q, two compound predicates are tested: (1) the conjunction of the predicates (P ∧ Q) and (2) the 

disjunction of the predicates (P ∨ Q). Once created a compound predicate can be combined with 

another compound predicate. Previous work in the field of software engineering has shown that 

there is not a significant benefit to combining compound predicates together more than three 

times [22]. 

3. Enhanced Trace Validation with the V&V Calculator 

In order to conduct a trace validation of an unexpected output from an ABM, the SME must 

identify the following: (1) the simulation output of interest; (2) the expected range of values for 

the output of interest; and (3) the agent and model characteristics relevant to the output of 

interest. These agent and model characteristics of interest reflect the entities within the 

simulation to trace during execution. These characteristics include any pieces of information 

relevant to the agents or the model that the SME thinks are directly dependent upon or that 

directly affect the output of interest. Next, the simulation must then be instrumented so that each 

time it is run it creates a trace of the characteristics of interest and records the value of the 

simulation output. Finally, the simulation is executed across a range of input conditions where 

the SME anticipates output within the expected range. 

It is important to note that these steps are not unique to our trace validation approach. Instead, 

these steps are required by trace validation. In what follows we describe how our approach, 

realized in the V&V Calculator, facilitates SME analysis of the traces by quantifying extent to 

which traced agent and the model characteristics cause outputs falling outside of the specified 

range. 



3.1 Using the V&V Calculator 

The traces produced by the simulation are aggregated together for use in the V&V Calculator. 

Once the traces are loaded into the calculator, the calculator notifies the SME if the output of 

each collected trace is within the specified range. If this is the case, the trace validation is over; 

there are no unexpected outputs for the simulation and the simulation output is considered valid 

under the input conditions that generated the traces [5, 10, 12].  

However, the trace validation process continues if any output that is produced falls outside of the 

specified range. Recall, an output that falls outside the specified range does not necessarily 

reflect an invalid simulation exhibiting an error. Instead, it may reflect output and lower-level 

interactions that are valid but were not expected by the SME [4]. The V&V calculator facilitates 

the collection of insight need for SMEs to make this determination. 

SMEs pursue insight into agent or model characteristics from the calculator by searching among 

the traced agent and model characteristics. The goal is to identify those with the strongest effect 

on the simulation outputs that fall outside the specified range. The search is parameterized by the 

SMEs specifying the types of statistical debugging predicates among the traced agent or model 

characteristics that they would like to explore. The specification includes the choice to query 

single variable, scalar pair, or both types of predicates, and if the predicates will be static, elastic, 

or compound. SMEs can also specify to exclude any individual or combinations entities of 

interest from the search. 

The interface of the V&V Calculator is shown in Figure 1. In Figure 1 the user has loaded a 

single file containing all the aggregated traces using the “Upload CSV File Here” button. 

Furthermore, they have specified the valid range of values for the output using the “Specify 

Value Range for Output” slider. The calculator has already informed the SME that at least one of 

the traces produced unexpected output. As a result, the SME expressed predicates of interest for 

querying using the “Pred. Types” and “Pred. Specificity” checkboxes. The only action remaining 

before the SME receives analysis to facilitate insight is to click the “Click Here To Generate & 

Score Predicates” button. 

The result of clicking this button is a list of the queried predicates in descending order of 

suspiciousness. Within the list, each predicate is a condition featuring at least one (often several) 

agent and model characteristics included in the trace. The application of using statistical 

debugging predicates to capture different conditions related to any traced model and agent 

characteristics is the novel contribution of our work. Specifically, it enables the extent to which 

each generated condition featuring at least one agent or model characteristic causes the 

unexpected output to be quantified via the suspiciousness measure. 



 

Figure 1. User interface of the V&V Calculator after loading collected traces into the tool. 

Recall, the suspiciousness measure reflects two metrics that quantify the extent to which the 

predicate causes output outside the specified range. These metrics are: (1) correlation – the 

likelihood given the predicate that output outside of the specified range occurs and (2) coverage 

– the likelihood given output outside the specified range that the predicate occurs. Ranking the 

SME configured predicates in descending order of suspiciousness provides an effective interface 

for analysis that enables SME insight into the causes of unexpected output. To elucidate the 

utility of our proposed approach we apply the V&V Calculator to an ABM of epidemic disease 

spread. 

3.2 Example: Epidemic Disease Spread 

An example helps elucidate the application and benefits of our enhanced approach to trace 

validation with the V&V Calculator. Epidemics have been modeled mathematically for over a 

century. Traditionally, in epidemiology the spread of a SIER infectious disease is described by a 

system of differential equations that determine the fractions of the population that are susceptible 

(S), exposed (E), infectious (I), and recovered (R), respectively. Individuals are susceptible, then 

exposed (in the latent period), then infectious, and then recover with permanent immunity [23]. 

Recently, researchers have begun to study the spread of SEIR epidemics in a fundamentally 

different way using agent-based models [24]. Here agents interact on a 2-D landscape and 

infectious agents search for susceptible agents within a specified radius of their current position 

and push the infection onto the susceptible population within the radius with a certain 

probability. Agents travel to work and return home at specified time steps and birth new agents 

onto the landscape at a specified birth rate. For a number of parameterizations of the ABM the 

curves (susceptible, exposed, infected, and removed) are a qualitative match to the established 

differential equation model. Figure 2(a) and Figure 2(b) show these qualitative matches [25]. 
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Figure 2. Epidemic graphs of susceptible, exposed, infected, and removed population curves from a differential 

equation model (a) and an Agent-based Model (b). 

Given the similarity in curves between Figure 2(a) and Figure 2(b), instances where the agent-

based model’s prediction drastically differs from the differential equation based model’s 

prediction should be validated. The SME needs to understand why the predictions are different 

and the SME needs to determine the validity of the interactions within the model that cause those 

predictions. One such circumstance occurs when all of the parameters in both models remain the 

same but the size of the population of interest is increased from 100 to 1,000 as shown in Figure 



3. The difference in the prediction of the disease spread of the two models is shown in Figure 

3(a) and Figure 3(b).  

To determine if the ABM-generated predictions that drastically differ from differential equation 

model predictions are valid, we apply our enhanced approach to trace validation. First, we 

identify our output of interest: the mean standard deviation of the four epidemic curves (S, E, I, 

and R) produced by the agent-based model from the established differential based curves over 

100 days. Then, we specify the valid range for this output: any mean deviation < 5% of the 

population will be considered a qualitative match of the differential equation model while any 

deviation > 5 % of the population deviation will not be considered a qualitative match and not an 

expected output. For context, the average mean standard deviation of the curves shown in Figure 

2(b) is 1.5 % while the average mean standard deviation of the curves shown in Figure 3(b) is 

14.7 % of the population.  

Next, we trace the value of the population size and four characteristics of each agent: (1) stay - 

the number of days thus far the agent has stayed at home and not travel to work due to infection; 

(2) othersInfed - the number of other agents thus far that have been infected by the agent; (3) 

expDays - the number of days thus far the agent has spent in the exposed state (E); and (4) 

infDays - the number of days thus far that the agent has spent in the infected state (I). Then, we 

run the simulation under different parameterizations including the one shown in figures 2(b) and 

3(b). Finally, we collect the traces we load them into the calculator, specify the predicates we 

want to generate, and score them for suspiciousness. 

The most suspicious predicate for the unexpected model predictions, like the one shown in 

Figure 3(b), is: othersInfed > μothersInfed + σothersInfed AND population > μpopulation + σpopulation. This 

compound elastic predicate shows that the most drastic differences in the prediction of the agent-

based model are due to a significantly higher rate of new infections per individual occurring 

when the population size is increased. Based on this analysis the SME can determine that the 

higher rate of new infections per individual is caused by more interactions among the agents due 

to a denser ABM landscape. Given this explanation it is up to the SME to determine if these 

interactions were intended and if the prediction is valid. However, the existence of the 

explanation and the insight that it provides is due to the V&V Calculator’s ability to generate, 

quantify, and rank predicates containing traced agent and model characteristics. Such insight 

would be challenging to capture without the use of (1) predicates to capture these conditions, and 

(2) the suspiciousness measure to quantify and rank the conditions. Next, we evaluate the 

effectiveness of our approach using five different published agent-based models each exhibiting 

an unexpected output. We compare the effectiveness of our approach to enhanced trace-

validation to several other candidate approaches that we have implemented. 



 

Figure 3. Epidemic graphs of susceptible, exposed, infected, and removed population curves from a differential 

equation model (a) and an Agent-based Model (b) when using 1,000 people. 

 



4. Evaluation 

4.1 Experimental Setup 

The utility of a trace validation approach is determined through experimental evaluation. The 

five different agent-based models and the unexpected output used to conduct our evaluation for 

each are listed in Table 1. Also listed in Table 1 are the agent and model characteristics traced 

for each simulation and the subset of those characteristics that cause the unexpected output. 

These models because they reflect a broad spectrum of established agent-based examples. The 

traced characteristics and outputs are chosen for each ABM because they reflect published 

examples of behaviors that at one time did not match the expectation of SMEs. The 

characteristics responsible for causing the unexpected output of each simulation reflect our 

review of published explanations of the model’s output. For each of the subject simulations we 

construct an experimental design by applying Latin hypercube sampling with 10,000 samples to 

the simulation’s parameters. A Latin hypercube design yields a sample where each of the 

dimensions of each variable is divided into equal levels and that there is only one point (i.e. 

sample) at each level. We use an optimized random procedure to determine the point locations so 

that good coverage of the design space is ensured as recommended by Cioppa and Lucas [26]. 

Overall, this setup ensures that our experiments are objective and the evaluation is not biased 

towards favoring our approach. 

Table 1. Subject simulations used in the evaluation of the enhanced trace validation process. 

Name Characteristics Traced Unexpected Output Characteristics 

Responsible 

Boids Height, Width, Separation, 

Cohesion, Alignment, 

Orientation Angle, 

Velocity, Acceleration  

Flocking Index > n/2 Separation, Cohesion 

Alignment 

Schelling Height, Width, Tolerance, 

# of Neighbors 

Mean Similarity < 60% # of Neighbors, 

Tolerance 

Obesity Age, Height, BMR, BMI, 

Calories Per Week, Life 

Expectancy 

Max Weight > 600 Age, Life Expectancy 

Self-

Driven 

Particle 

Height, Width, Interaction 

Radius, Random Term, 

Orientation Angle 

# of clusters > n/2 Interaction Radius,  

Random Term 

Epidemic 

Disease 

Spread 

Population, Stay, 

OthersInfed, expDays, 

infDays 

Avg. Std. Dev. > 5 Population, Others 

Infected 

 



Boids 

Boids models the flight patterns of birds on a two-dimensional grid [27]. Height and width 

parameters control the area of the grid. Within the simulation, three parameters control the 

behavior of each bird: separation; alignment; and cohesion. Each parameter reflects the mean 

value of a normal distribution and each boid is instantiated by sampling values from these 

distributions. The degree of separation controls the extent to which the birds avoid crowding 

each other. Alignment controls the degree to which each bird steers to the average head of the 

other birds. The cohesion parameter controls the amount that each bird moves toward the 

average position of the other birds [28—30]. 

The output of the simulation is the mean flocking index of the birds [31]. Under most conditions 

the model produces a low flocking index reflecting birds flying along independent paths. 

However, under certain conditions the birds convene into a single flock flying along one path 

creating a high flocking index. This characteristic of the simulation has made it an exemplar of 

designing decentralized systems through an agent-based paradigm. 

In the evaluation we track the height and width of the canvas along with the separation, 

alignment, and cohesion of each bird. Additionally, the trace tracks the following characteristics 

of each bird over time: the orientation angle of the bird, the current speed of the bird, and the 

change in acceleration from the previous time step of the bird. A trace producing an unexpected 

output occurs if there is a mean flocking index greater than half the size of the population 

occurring at any point after 100 time steps in the simulation. This implementation is described in 

Quera et al. [31].  

We chose this output because most observers do not expect to observe the boids flocking since 

there is no centralized direction given to the boids. As a result when one first observes this 

behavior, an explanation is needed to ensure the model is valid [32].  

Schelling’s Model of Segregation 

The Schelling model of segregation explores how the decisions of individuals to move based on 

their relative positions to their neighbors can lead to segregation. In the model, each agent 

belongs to one of two groups and aims to reside within a neighborhood populated by similar 

agents. Agents in the simulation continually relocate based on their neighbors until achieving a 

steady state. The degree of segregation of the steady state is referred to as the mean similarity. 

This reflects the average percentage of similar individuals within a neighborhood during the 

steady state. A steady state is achieved when the mean similarity of each neighborhood in the 

simulation does not increase or decrease by 1% in ten consecutive time steps. Under most 

parameterizations, a mean similarity of at least 75% occurs by the time that the simulation 

reaches a steady state. This implementation is described in Schelling [33]. 

How and when agents move are controlled by the following conditions: (1) the dimensions of the 

urban area; (2) agent-density of the urban area; and (3) the extent of each agent’s tolerance – the 



agent’s willingness to reside in a neighborhood with dissimilar agents [34, 35]. The tolerance of 

each agent is chosen from a uniform distribution with a specified mean. Along with the height 

and width of the canvas and the tolerance of an agent, the trace also tracks the number of 

neighbors the agent has over time. A trace producing an unexpected output occurs if the mean 

similarity is less than 60% after a steady state is achieved. 

We chose this output because given the ability of agents to move to areas with similar neighbors, 

most observers expect segregation. As a result when one first observes an output reflecting 

integrated neighborhoods an explanation is needed to ensure the model is valid [36]. 

Obesity ABM 

The agent-based obesity model included in our evaluation shows how the availability of different 

restaurant choices in an area affects obesity. The simulation contains four types of entities: 

people, homes, restaurants, and workplaces. Inputs include the number of people, the eating 

habits of the people, the starting age and weight levels of the people, the number of workplaces, 

the number of restaurants, and the types of restaurants. Everyday each person eats three meals, 

which are obtained from the restaurants. Each meal contributes a number of calories to the 

individual based on the restaurant’s type. People choose restaurants based on their current 

location. At the end of every week, each person’s weight adjusts based on the number of calories 

that they consumed during the week compared against the number of calories that they needed to 

maintain their weight level. Calorie levels are reset each week and the obesity of each individual 

is tracked over time. Agents are removed from the population as a stochastic function of their life 

expectancy, which is influenced by their level of obesity. This implementation is described in 

[37].  

The trace tracks six characteristics of each agent in the simulation over time: (1) the age of the 

agent; (2) the height of the agent; (3) the BMR (basal metabolic rate) of the agent, which 

provides the number of calories that the agent needs each day to maintain its current weight; (4) 

the BMI (body mass index) of the agent, which is a screening measure for obesity; (5) the 

average number of calories that the agent consumes in a week; and (6) the life expectancy of the 

agent given the previously mentioned variables. The output of interest in the model is the 

maximum weight in pounds of any living person in the population. A trace producing an 

unexpected output features at least one person whose maximum weight is more than 700 pounds.  

We chose this output because it reflects a liberal estimate for the maximum weight of an agent. 

When agents are produced that exceed 700 pounds the model is invalid. Explanation is required 

so the model can be modified to ensure that 700-pound agents are not produced [21]. 

Self-Driven Particle Model 

In the self-driven particle model agents interact on a 2-dimensional torus according to a simple 

rule. Particles move at a constant speed, and their interaction radius and a random term control 

their orientation. The interaction radius reflects the maximum distance a neighbor must be from a 



particle to influence their orientation. The random term reflects the degrees of randomness added 

to the average orientation of all particles within the interaction radius [38]. The implementation 

of this model is provided in Wieman et al. [39].  

Under most parameterizations particles form clusters. However, under some parameterizations 

the particles exhibit a different behavior. Rather than joining a distinct cluster, each particle 

roams in a random walk. This behavior is called Spontaneous Symmetry Breaking [40].  

The trace tracks the height and width of the torus, the interaction radius, and the random term 

employed by each agent along with the orientation angle of the agent over time. Any simulation 

run where there are more clusters than half the number of agents in the population reflects 

Spontaneous Symmetry Breaking and is considered an unexpected output.  

We chose this output because given the influence of neighboring particles on one another most 

observers expect coordinated movement among the particles. As a result when one first observes 

the particles moving independently along random walks an explanation is needed to ensure the 

model is valid [41]. 

Epidemic Disease Spread ABM 

The epidemic disease spread model, its implementation, unexpected output, and agent entities 

included are the same as those described in the example presented in Section 3.2. Recall, under 

many parameterizations the ABM produces a prediction that matches the differential equation 

model of epidemic disease spread. However, under certain parameterizations the predictions of 

the two models drastically differ. In these cases the output of the ABM needs to be explained to 

understand why it differs from the differential equation model and under what conditions it is 

valid [25]. 

4.2 Competing Approaches 

Four different versions of our enhanced trace validation approach are featured in the evaluation: 

Random-Walk (RW), Correlation-Only (Corr), Coverage-Only (Cov) and Suspiciousness (Susp). 

Each approach generates the same predicates for each simulation (static, elastic, single variable, 

scalar pairs and compound predicates). However, the versions differ based on the measure they 

use to rank predicates related to an unexpected output. In what follows, we summarize the 

similarities and the differences of the ranking strategies. 

Random-Walk (RW) 

The RW version of our enhanced trace validation approach puts generated predicates reflecting 

the traced agent and model characteristics in a random order and presents them to the SME. It is 

included within the evaluation as a baseline, which any version of our approach must 

outperform. 



Correlation-Only (Corr) 

The Corr version of our enhanced trace validation approach uses the correlation measure for 

predicates described in Equation 1. Recall, this measure reflects the likelihood that an execution 

trace exhibiting the predicate featuring the traced agent and model characteristic(s) will produce 

outputs outside of the specified range. Predicates from the Corr version are ranked in descending 

order of correlation and presented to the SME. This version is included in the evaluation to 

determine the extent to which using correlation alone enables effective trace validation. 

Coverage-Only (Cov) 

The Cov version of our enhanced trace validation approach uses the coverage measure for 

predicates described in Equation 2. Recall, this measure reflects the likelihood that an execution 

trace producing output outside of the specified range will exhibit the predicate featuring the 

traced agent and model characteristic(s). Predicates from the Cov version are ranked in 

descending order of coverage and presented to the SME. This version is included in the 

evaluation to determine the extent to which using coverage alone enables effective trace 

validation. 

Suspiciousness (Susp) 

The Susp version of our enhanced trace validation approach combines the correlation and 

coverage measure for predicates using the harmonic mean. This measure is described in Equation 

3. Predicates from the Susp version are ranked in descending order of suspiciousness and 

presented to the SME. This is the version of our enhanced trace validation approach that is 

proposed and described in the preceding sections. It is included in the evaluation to determine the 

extent to which using a measure, which factors in correlation and coverage alone enables 

superior trace validation. 

4.3 Effectiveness 

Given a ranked set of predicates, Cost measures the percentage of predicates a developer must 

examine before encountering a predicate which: (1) includes all of the agent and model 

characteristics causing the unexpected output; and (2) includes only the agent and model 

characteristics that cause the unexpected output. 

If there are ties, it is assumed that the developer must examine all of the tied predicates. For 

example, if there are n predicates scored by an approach and all n predicates have the same 

score, it is assumed that the developer must examine all n predicates. A lower Cost is preferable 

because it means that fewer of the predicates must be considered by the SME before the 

characteristics causing the unexpected output are found. 

It is important to note that this evaluation strategy does not consider the relationship among the 

agent and model characteristics causing the unexpected output. This is a conscious choice made 

to reflect the variability surrounding how SMEs gain insight into unexpected outputs. 

Reasonable SMEs may disagree as to how an ideal predicate would capture the relationship 



among the agent and model characteristics creating the unexpected output. We avoid these 

concerns by employing an evaluation metric that does not take this into account. 

The effectiveness results of employing the approaches included in the evaluation for the subject 

simulations are shown in Table 2. Each row in Table 2 shows a Cost range, and the number (and 

percentage) of subjects for each approach that incur the specified Cost. Figure 4 provides a 

graphical view of this data, where the x-axis represents the lower bound of each Cost range and 

the y-axis represents the percentage of subjects where a Cost less than or equal to the upper 

bound is incurred. This presentation of data follows the established convention in the statistical 

debugging community [42]. 

Table 2. Number and (percentage) of predicates that need to be searched through by the SME 

within the ranked list in each score range for all approaches. 

Cost Range RW Corr Cov Susp 

< 1 % 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 

< 2 % 0 (0 %) 1 (20 %) 1 (20 %) 1 (20 %) 

< 4 % 0 (0 %) 1 (20 %) 1 (20 %) 2 (40 %) 

< 8 % 0 (0 %) 2 (40 %) 2 (40 %) 3 (60 %) 

< 16 % 1 (20 %) 3 (60 %) 3 (60 %) 5 (100%) 

< 32 % 2 (40 %) 4 (80 %) 5 (100%) 5 (100%) 

< 64 % 3 (60 %) 4 (80 %) 5 (100%) 5 (100%) 

≤100 % 5 (100%) 5 (100%) 5 (100%) 5 (100%) 

 

The Susp version of our approach outperforms each of the other alternatives in our evaluation. 

For each of the five subject simulations it lists the agent and/or model characteristics causing the 

unexpected output in the top 10% of the ranked predicates. Furthermore, for three of the five 

simulations it ranks the causing characteristics in the top 4% of the ranked predicates. In what 

follows, we discuss the difference between the performance of Susp and each of the other 

versions in more detail. 

Susp Vs. RW 

The Susp version of our evaluation approach significantly outperforms RW. This is expected. 

Recall, RW is included in the evaluation as a baseline that any version of our approach must 

exceed. However, the extent to which all of the other versions outperform RW is noteworthy. No 

other approach needed to examine more than 60% of the generated predicates for a subject 

ABM, while the RW needed to examine this many predicates for two different subject 

simulations (Boids and Self-Driven Particle). 



 

Figure 4. Evaluation of the effectiveness. Higher and further to the left is better. 

Susp Vs. Corr 

For two of the five subject simulations (Obesity and Epidemic) the Corr version of our approach 

performs extremely well. It ranks the agent and/or model characteristics causing the unexpected 

output of these simulations within the top 8% of the generated predicates. However, for the other 

three simulations its inability to factor in the number of times that an agent or any model 

characteristic appears in traces that produce unexpected output hampers its effectiveness. In each 

of these cases Corr over-ranks elastic predicates that only occur in one or two traces producing 

the unexpected output. These predicates do not capture the different ways in which the 

unexpected output can be produced. As a result, the Corr version of the approach pushes down 

more useful predicates that cover all the agent and/or model characteristics causing the 

unexpected output. The Susp version does not fall victim to this issue because it includes a 

measure that quantifies how often a trace, which produces unexpected output, includes each 

predicate. This ensures that only the agent and model characteristics that occur frequently and 

exclusively in traces that produce unexpected output are ranked at the top of the list. 

Susp Vs. Cov 

The Cov version of our approach performs well. It ranks the agent and model characteristics 

causing the unexpected output of four of the five simulations within the top 16% of the list. 

Furthermore, for the final simulation it ranks the predicate containing any agent or model 

characteristics causing the unexpected output in the top 32% of the list. Ultimately, what reduces 

the effectiveness of the Cov version is that it does not distinguish between a predicate in a trace 

that does produce expected output versus a predicate in a trace that does not. The result is an 

approach that ranks predicates containing the agent and model characteristics, which appear in 



all traces the same as predicates containing the agent and model characteristics that only appear 

in traces that produce unexpected output. The Susp version does not fall victim to this issue 

because it includes a measure that quantifies how often a predicate results in unexpected output. 

This ensures that only the agent and/or model characteristics that occur frequently and 

exclusively in traces that produce unexpected output are ranked at the top of the list. 

Susp Vs. Others 

The suspiciousness measure used in Susp facilitates SME inspection and analysis of ABM traces. 

This capability of Susp is similar to the Geamas Virtual Laboratory (GLV) tool [8] and the Trace 

Validation Interface (TVI) proposed by [18]. However, the two approaches are orthogonal. GLV 

and TVI facilitate SME inspection of trace data by efficiently creating on-demand graphics. In 

contrast, Susp employs automated analysis on the collected data to rank conditions possibly 

causing the unexpected output.  

These different capabilities make the approaches hard to compare against one another. It is 

possible that some SMEs could use GLV or TVI to produce a graphic that provided an 

explanation of an unexpected output faster than if they used Susp to rank conditions causing the 

output. However, it is also possible that another SME could choose to use GLV or TVI to create 

different graphics and as a result of this choice would be unable to explain the unexpected output 

at all. In future work we will explore how the visualization capabilities provided in GLV and 

TVI can be incorporated into Susp to improve its effectiveness. 

5. Discussion 

5.1 Validity 

Internal, external, and construct validity threats affect our evaluation. Internal validity threats 

arise when factors affect the dependent variables without evaluators’ knowledge. It is possible 

that some implementation flaws could have affected the evaluation results. However, we 

conducted a code review on each of the trace validation approaches we implemented and the 

source code of the subject agent-based models were obtained from supplemental materials of 

published research. Threats to external validity occur when the results of our evaluation cannot 

be generalized. Although we performed our evaluations on five agent-based models and three 

different fault localization approaches, we cannot claim that the effectiveness observed in our 

evaluation can be generalized to other unexpected outputs in other agent-based models. Threats 

to construct validity concern the appropriateness of the metrics used in our evaluation. More 

studies into how SMEs gain insight from collected traces need to be performed. However, 

currently we are not aware of any evaluations. As a result, our evaluation and effectiveness 

metrics serve as a starting point for other researchers to improve upon. 



5.2 Limitations 

It is important to note that all of the causes of unexpected output in our evaluation reflect agent 

and model characteristics that are included in traces. A notable limitation of our work is that it is 

incapable of identifying any characteristic that causes an unexpected output, which is not 

included within the traces. Furthermore, our evaluation only includes models exhibiting a single 

type of unexpected output. This is relatively uncommon. During the initial stages of 

development, models often feature multiple types of unexpected outputs. Adapting our enhanced 

validation approach so that it is effective for models with multiple types of unexpected outputs is 

an opportunity for future work. 

6. Conclusion and Future Work 

Our goal is to develop an effective and structured approach for Trace Validation to facilitate 

SMEs insight into the causes of unexpected outputs. As a means to this end, we developed the 

V&V Calculator, which applies statistical debugging to enhance trace validation. Specifically, it 

enables SMEs to aggregate collected traces of agent and/or model characteristics together and 

quantifies the extent to which combinations of those characteristics cause an unexpected output. 

Our approach is evaluated using against several alternatives we implemented and is shown to be 

the most effective version for five different agent-based models each exhibiting an unexpected 

output. Ultimately, these contributions further the state of the art in trace validation for SMEs 

tasked with V&V. In the future we will explore how SMEs gain insight from the V&V 

Calculator and how to adapt its analysis to simulations with multiple types of unexpected output. 

Notes 

The V&V Calculator is freely available on GitHub at 

https://github.com/rossgore/IVandVLevelChecker/ 
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